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Chapter 1

Introduction

1.1 Web Services

Nowadays, many applications are based on network communication. Amongst such new
kinds of applications are Web Services. A Web Service [Con02] is a service that resides
at some remote location, that receives requests over the Internet, and that performs com-
putation before giving an answer. In practical terms, Web Services look to become the
foundation of e-commerce.

The first key enabling technology for Web Services is the use of a standard data format,
XML, along with the use of standard protocols like HTTP [FGM+99] and SOAP [Con03].
These standards allow for the interaction of services written in different languages and
executed in different environments.

The second key technology is orchestration. Orchestration is when a Web Service, as
well as performing local computation, can also interact with other Web Services to prepare
its answer. For instance, a travel-agent Web Service might interact with an airline Web
Service and a hotel Web Service in order to complete its booking. Orchestration means
that Web Services must be considered as interacting processes which exchange messages
in complicated protocols, rather than just as remote functions which receive input and
give back output. Orchestration standards have not yet been finalized; however, existing
proposals [Cor, LM02, Bus, BIM+] are mostly based on the π–calculus formalism.

The π–calculus [MPW92, Mil99] is a widely studied formalism based on message passing
for describing and reasoning about distributed and concurrent systems; born in early 90’s,
it had an immediate success in the academic world for its mobility features that potentially
made suitable for many distributed applications, such as phone mobile networks.

Today also business world looks at it with interest. The evidence of this interest is in
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6 CHAPTER 1. INTRODUCTION

the fact that it can be found together with XML-processing in new commercial products.
Notable, they are found together in Microsoft Biztalk Server 2000 [Cor], a product used to
create Web Services. The orchestration language used in Biztalk is called XLang, and it
is based on the “asynchronous” version of the π–calculus [MS98]; all Biztalk messages are
XML documents. XML and π–calculus are also found together in Highwire [Mer02, LM02],
an ongoing project currently under development at Microsoft. Highwire is based on the
“explicit fusion” version of the π–calculus [GW00]; it uses terms in linear logic as its data,
uses cut–elimination for exchange of data, and argues that linear logic is a generalization of
XML.

The “fusion” group at Bologna also wishes to integrate π–calculus and XML, to make
a formalism of this integration, and to implement it. We have chosen to use a different
model for XML — namely, the tree regular expressions of Hosoya’s XDuce [HP03]. These
tree regular expressions also form the foundation of XQuery [FMM+03], CDuce [BCF03]
and XTatic [GP03]. We believe that this approach will yield an “XML–π–calculus” which
is easier for programmers to understand than Highwire, and which is easier to formalize and
implement.

The fusion group’s project has been carried out in two parallel dissertations. The first,
by Paolo Milazzo, gives a Java implementation of the π–calculus but without any XML.
My dissertation gives a Java implementation of tree regular expressions but without any
π–calculus. An integration of the two implementations is currently in progress.

1.2 XDuce

One of the reasons for popularity of XML is the existence of a number of schema languages,
including DTDs [XML98], XML-Schema [XS 00], DSD [KMS] and RELAX [CM01], that
can be used to define “types” (or “schemas”) describing structural constraints on data and
thereby improving the safety of data processing and exchange.

However, as noted in XDuce [HVP00], the use of types in mainstream XML processing
technology is often limited to checking only data, not programs. Typically, an XML pro-
cessing program first reads an XML document and checks that it conforms to a given type
using a validating parser. The program then uses either a generic tree manipulation library
such as DOM [DOM] or a dedicated XML language such as XSLT [XSL99] or XML-QL
[DFF+]. Since these tools don’t provide any systematic connection between the program
and the types of the documents it manipulates, using them gives no compile-time guarantee
that the documents produced by the program will always conform to an intended type.

XDuce proposes tree regular expression types as a foundation for statically typed pro-
cessing of XML documents. Regular expression types capture (and generalize) the regular
expression notations (*, ?, |, etc.) commonly found in schema languages for XML, as well
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as the hierarchical tree structure of XML.

Regular Expression Types

As a simple example of regular expression types, consider the definitions

type Addrbook = addrbook[Person*]

type Person = person[Name,Email*,Tel?]

type Name = name[String]

type Email = email[String]

type Tel = tel[String]

corresponding to the following set of DTD declarations:

<!ELEMENT addrbook person*>

<!ELEMENT person (name,email*,tel?)>

<!ELEMENT name #PCDATA>

<!ELEMENT email #PCDATA>

<!ELEMENT tel #PCDATA>

This example comes from [HVP00]. Type constructors of the form label[...] classify
tree nodes with the tag label (i.e. XML elements of the form <label>...</label>).
Thus, the inhabitants of the types Name, Email, and Tel are all XML elements containing
arbitrary strings with the appropriate identifying label. Types may also involve the regular
expression operators * (repetition), + (repetition of one or more occurrences) and ? (optional
occurrence), as well as | (alternation). Thus, the type Addrbook describes a label addrbook
whose content is zero or more repetitions of subtrees of type Person. Likewise, the type
Person describes a label person whose content is a Name subtree, zero or more Email
subtrees, and an optional Tel subtree. An instance of the type Addrbook is the following
XML document:

<addrbook>

<person>

<name> Haruo Hosoya </name>

<email> hahosoya@kyoto-u </email>

<email> hahosoya@upenn </email>

</person>

<person>

<name> Benjamin Pierce </name>

<email> bcpierce@upenn </email>

<tel> 123-456-789 </tel>

</person>

</addrbook>
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Regular Expression Pattern Matching

The other core feature of XDuce is regular expression pattern matching. This extends con-
ventional ML-like pattern-matching with regular expression operators such as repetition (*),
alternation (|), etc., and with the ability to specify (possibly recursive) types directly inside
patterns. These features allow to write compact patterns that can match arbitrarily long
sequences of subtrees and that can extract data from the middle of a complex sequence.
This is often useful in XML processing, as we’ll argue below.

To see why, consider again the example of the previous section. We can write a regular
expression pattern match which, given a value p of type Person, checks whether p contains
a tel field and if so extracts the contents of name and tel:

match p with

person[name[val n], Email*, tel[val t]]

-> (* do some stuff involving n and t *)

| person[val c]

-> (* do other stuff *)

Note how, apart the use of the regular expression patterns, the syntax is close to that of
ML: the match construct consists of an input variable (above it’s p) and a series of clauses
(two in the example), each of which is a pair of a pattern and a body. If the value of the
variable matches with a pattern, its corresponding body is run (or, using the terminology
of XDuce, the term that constitutes the body is evaluated).

In the example the first pattern matches a node labelled person whose content is a
sequence of a name, zero or more emails, and a tel. In this case, we bind the variable
n to the name’s content and t to the tel’s content and then evaluate the body possibly
containing n and t. The second case matches a label person with any content and binds c
to the content. The second case is invoked only when the first case fails, i.e., when there is
no Tel component.

Note how the first pattern uses the regular expression type Email* to “jump over” an
arbitrary-length sequence and extract the tel node following it. That is, when the pattern
matcher looks at the pattern Email*, no hint is available about how many emails there
are, therefore the matcher must walk through the input value until it finds the end of the
chain of emails. This iterative behavior, which is beyond ML pattern matching, enables
matching of arbitrary length sequences. [Hos01], [HP02] argue that this is often quite
useful in programming with XML, on the grounds that XML data structures often contain
sequences where repetitive, optional, and fixed parts are mixed together; regular expression
pattern matching allows direct access to the parts of such sequences.

For example, the pattern above is substantially more compact than explicitly writing
a recursive function that traverses the sequence, as we would need to do if only ML-style
matching of fixed-length sequences were supported.
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The usefulness of matching against regular expression types is yet more evident in the
following complex pattern, which extracts the subcomponents of an HTML table:

match t with

table[cap as Caption?,

col as (Col*|Colgroup*),

hd as Thead,

ft as Tfoot?,

bd as (Tbody+|Tr+)]

-> ...

An HTML table consists of several optional fields (Caption? and Tfoot?) and repetitive
fields (Col*, Colgroup*, Tbody+, and Tr+) (we assume the types Caption, Col, etc., to be
defined elsewhere). Again, by matching against regular expression patterns, we can directly
pick out each subcomponent, whose position in the input sequence is statically unknown.
Imagine equivalent code written only with simpler ML-like pattern matching.

1.3 Reviewing XDuce

The goal of writing tree regular expressions in Java seemed originally an easy one: merely
a port of the XDuce code from ML into Java. In practice it turned out more difficult.

The source code of the last version of the tool (0.4.0) [XDu] is terse and sparsely com-
mented, and contains substantial code duplication (e.g. automata are defined in both
patmatch.ml and typeop.ml). Rather than porting XDuce source code, I found it bet-
ter to write a Java implementation from scratch, based on the publications.

Beside the code, there are six other publications for the algorithms. The algorithms are
spread throughout these publications.

1. “Regular Expression Types for XML” [Hos01], the PhD thesis of Hosoya written from
the summer 1999 and completed in 3 January 2001, is a clear (but out of date) work

2. “Regular Expression Types for XML” [HVP00], is a paper written and published in
2000 that focuses on semantic checks

3. “Regular Expression Pattern Matching for XML” [HP02], is a paper written in 2001
and published in 2002 that focuses on type inference and pattern matching

4. “Regular Expression Pattern Matching — A Simpler Design —” [Hos03] is a recent
work (February 2003) that describes most of the new algorithms (pattern matching,
type inference and the ambiguity check)
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5. “Validation and Boolean operations for Attribute-Element Constraints” [HM02b] is
a paper written in October 2002, apparently focused on new attribute handling, but
that also includes the formalization of one of the two subroutines needed for the new
subtyping check (the difference between automata)

6. “Boolean Operations and Inclusion Test for Attribute-Element Constraints (Extended
Abstract)” [HM02a] is a paper less or more written in the same period of the previous
one and that has much overlapping material but also includes both the two subroutines
for the new subtyping check (difference between automata and non-emptiness test)

The old articles are more complete (and I found them easier to understand) but alas
theirs algorithms are often out of date.

Also, there were some problems with the difference algorithms as defined in [HM02a,
HM02b]. Most seriously, it gives the wrong answers as compared with the intended meaning
of “difference” and also with respect to the XDuce implementation itself — see Section 4.3.4,
page 79. As written in [HM02a, HM02b] there are also some typographical errors with the
algorithm. Finally, the explanation in section of [HM02b] of why there is the need to apply
the subset construct in the algorithm is questionable1.

I wish to thank Hosoya, the author of XDuce, for his availability and courtesy; everytime I
asked to him clarifications by email, he always answered me readily with extreme friendliness.
Also I would like to express my appreciation for the research work he made with XDuce.

1.4 Outline of the Thesis

The plan of this dissertation is as follows.

1. Chapter 2 provides an up-to-date snapshot of the entire language. I partly replicated
the work of Hosoya here, especially in sections 2.1 and 2.2 that describe the whole
language from scratch. However in section 2.3 I outline some aspects of XDuce which
may not be apparent to the casual reader of the XDuce specifications. Also, Section
2.4 explains the changes that have been made in XDuce over the years, and their
reasons.

2. Chapter 3 presents my final Java program, called XRel — “XML Regular Expressions
Language”. XRel is not a re–implementation of all of XDuce but essentially a test
harness for tree regular expression algorithms. Despite this, all main algorithms of
XDuce (pattern matching, subtyping, type inference and static typechecks) have been

1readers familiar with string automata techniques should notice here that, unlike string automata, deter-

ministic top–down tree automata and non–deterministic top–down tree automata are not equally expressive,

so we can’t compute difference applying determinization
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implemented, while for simplicity we preferred to omit some features that were not
interesting for our purposes (filters [Hos04], attributes [HM02a, HM02b] and label
classes [HP03]).

3. Chapter 4 is the core of the dissertation. It documents the algorithms and my Java
implementation.

Appendix A contains the JavaCC / JJTree generated formal grammar for XRel.

Original Contributions

This thesis is mainly an analysis of the XDuce language and a re–implementation of tree
regular expression algorithms.

It also introduces a novel and simpler ambiguity-check algorithm, for checking whether a
tree regular expression would match some value in more than one way, that is based on the
notion of weak ambiguity instead of the strong one used by Hosoya. Ambiguity is defined
in Section 3.3.3 (page 50); my algorithm is presented in section 4.3.3 (page 50).

Another contribution is to draw attention to an error in the formalization of the difference
algorithm given in [HM02a, HM02b] and to present a corrected algorithm.

A further contribution of this thesis is to provide an up-to-date snapshot of the language
and especially of the algorithms, because — as indicated above — the work–in–progress
condition of XDuce makes the documentation of the algorithms difficult.

1.5 Related Work

XDuce has made a significant impact in the XML world; in particular, it strongly influenced
the type system of XQuery, the W3C standard query language for XML, as well as new
schema languages such as TREX.

We outline here some of the main projects inspired from XDuce, specifically CDuce
[BCF02, BCF03], Xtatic [GP03] and XQuery [GP03]. For an overview of other works and
a thorough comparison of these with the XDuce approach we refer the reader to [HP00].

CDuce and XTatic CDuce (“seduce”) is a general purpose functional programming lan-
guage developed by Benzaken, Castagna, Frisch, whose design is targeted to XML appli-
cations. The work on CDuce started two years ago from an attempt to overtake some
limitations of XDuce, as authors explain in [BCF03].

Xtatic is the “official” successor of XDuce developed at the University of Pennsylvania
by B.C. Pierce, M.J. Levin, V. Gapeyev and A. Smith with the aim to integrate XDuce
features in C#.
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The goals for Xtatic and CDuce are similar in that they both try to integrate XDuce
features in a larger design and a less XML-specific language. CDuce builds on the functional
flavor of XDuce and extends it to a full-fledged functional language, whereas Xtatic goes
toward OO principles and combines XDuce types with the class hierarchy of a host language,
namely C#. The integration of XDuce and C# in Xtatic is smooth and elegant both on the
language side (thanks to the introduction of a special Seq class, and a clever treatment of
the concatenation) and on the implementation side (by resorting to an encoding technique
reminiscent of Pizza’s homogeneous translation [OW97]). Xtatic and CDuce both have to
face the problem of combining XDuce’s semantic definition of subtyping with a richer type
algebra. Xtatic’s solution is simpler as it relies on named typing for C# classes, where
CDuce has to tackle classical issues when dealing with set-theoretic interpretation of arrow
types. On a less theoretical side, CDuce and Xtatic share many design decisions, including
syntactic choices and small decisions such as first-class XML tags and strings as sequences
of characters. CDuce and Xtatic designs also have noticeable differences; among them is
that CDuce avoids the stratification of the type algebra between XML types and non-XML
types and this permits the use of pattern matching also for nonXML data structures (such
as pairs or records). As for expressivity, their algorithm supports in addition ambiguous
patterns (disambiguated with first match policy), non-linear capture variables (even under
repetition operators), and XML attributes (implemented as records in CDuce).

XQuery XQuery is mainly aimed at performing queries on XML documents. Its type
system took inspiration from that of XDuce. To perform queries, XQuery adds to XDuce
a for loop as well as support for XPath, while it removes complex pattern matching with
regular expression patterns and, recently, structural typing (replaced by named typing as
in XML Schema [Con01], so as to avoid tree automata from having to check subtyping or
validate documents).



Chapter 2

XDuce

XDuce (pronounced “transduce”) is a tree transformation language, similar in spirit to
mainstream functional languages but specialized to the domain of XML processing. Its novel
features are regular expression types and a corresponding mechanism for regular expression
pattern matching.

Regular expression types are a natural generalization of DTDs, describing, as DTDs
do, structures in XML documents using regular expression operators (i.e. *, ?, |, etc.).
Moreover, regular expression types support a simple but powerful notion of subtyping,
yielding a substantial degree of flexibility in programming.

Regular expression pattern matching is similar to ML pattern matching except that
regular expression types can be embedded in patterns, which allows even more flexible
matching.

In section 2.1 I introduce the language and its main novelties illustrating them with some
simple examples, then I give a full detailed description of the language; a formalization of
the language can be found in section 2.2. In section 2.3 I emphasize differences with the
formalization of the author and I explain the reasons of the changes. Finally in section 2.4
I’ll talk about some design changes of XDuce through the time and I’ll make an attempt to
motivate some author choices.

2.1 Highlights

In this section I give a detailed but somewhat informal explanation of the main aspects of
the language. More demanding readers should read section 2.2 instead where I include a

13
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formal definition of a core of the language1. Both the descriptions are very close but not
exactly the same that author gives in [HP03]. Specifically formal description of the language
has some non-trivial differences (see section 2.3 for a related discussion).

Below I will introduce basic features of XDuce: values, types, pattern matching and
functions.

2.1.1 Values

Run-time values in XDuce roughly correspond to XML fragments2. To be precise, each
value in XDuce is a sequence of nodes, each of which can be a base value (an integer, a float
or a string), a labelled subtree or an empty sequence (note that a whole single-rooted XML
document can be internally represented with a singleton sequence).

XDuce provides several operations for constructing such sequences. An expression of the
form l[e] constructs a singleton sequence of a label l containing a sequence resulted from
evaluating the expression e. Comma is a binary operator that concatenates two sequences
(because it’s associative, i.e. both (e1,e2),e3 and e1,(e2,e3) produce the same sequence,
we drop parentheses). String literals are enclosed in double-quotes, unlike XML. Finally the
constructor () builds the empty sequence.

For example the XML document we’ve seen in section 1.2 can be represented with the
following XDuce value:

addrbook[

person[

name["Haruo Hosoya"],

email["hahosoya@kyoto-u"],

email["hahosoya@upenn"]

],

person[

name["Benjamin Pierce"],

email["bcpierce@upenn"],

tel["123-456-789"]

]

]

Beside the use of sequence constructors we’ve seen above, XDuce implementation lets to load
an external XML document from the file system with the built-in function “load xml(filename)”
and validate it at run-time against a type whose name is X with the built-in construct
“validate v with X”. Conversely, we can save a value v to an XML file with the built-in

1Actually I omit only attributes and unessential features (e.g. the || operator) or accessory features (e.g.

built-in functions for typecasting, printing, . . . ). Concerning attributes author says in [HP03] that support

for them is again on-going work
2see the description of XRel values in section ?? to see why there is not an exact correspondence
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function “save xml(filename)(v)”3. We’ll give an example of the use of these statements
in section 2.1.6.

2.1.2 Types

We’ve introduced types in section 1.2 when we’ve made the following example:

person[name[String], email[String]*, tel[String]?]

that describes values consisting of the single label person containing a sequence of a name,
zero or more emails, and an optional tel, each containing a string.

XDuce types are descriptions of sets of structurally similar values. They’re called regular
expression types because they closely resemble ordinary string regular expressions, the only
difference being that they describe sequences of tree nodes, whereas string regular expres-
sions describe sequences of characters. As “atoms” we have labelled types like label[T]

(which denotes the set of sequences containing a single subtree labelled label), the empty
sequence type () and base types such as String, Int and Float4.

Types can be composed by concatenation (comma), zero-or-more-times repetition (*),
one-or-more-times repetition (+), optionality (?), and alternation (|, also called union).

Type expressions can be given names in XDuce programs by type definitions. For ex-
ample in the followings:

type Person = person[Name,Email*,Tel?]

type Name = name[String]

type Email = email[String]

type Tel = tel[String]

the type named Person is defined to be an abbreviation for the type person[Name,Email*,Tel?],
which uses Name, Email, and Tel to refer to the types associated with these names. Type
definitions are convenient for avoiding repetition of large type expressions in programs.
More importantly, though, they may be (mutually) recursive; we will discuss this possibility
further in Section 2.1.5.

Again, the XDuce implementation supports two ways of declaring types: use type defi-
nitions above or (statically) import existing DTDs from the external environment with the
statement “import dtd filename”.

Label Classes

The labelled types we have seen so far have the form l[T] and describe singleton sequences
labelled exactly with l. XDuce actually generalizes such types to allow more complex forms

3Functions with more than one argument in XDuce take each argument enclosed in a pair of parentheses
4Actually also string, float and int literals are base types, see section 2.2.3
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called “label classes” that represent sets of possible labels. (This idea is also present in other
XML type systems such as RELAX NG [CM01]). The l in the form l[T] is a label class
representing a singleton set. The label class “~” represents the set of all labels. Among
other things we can use it to define a type Any that denotes the set of all values5:

type Any = (~[Any] | Int | Float | String)*

We also allow a label class of the form (l1|...|ln) representing the choice between several
labels. Such label classes are useful for describing a labelled type that has multiple possible
labels, all with the same content type. For example, HTML headings may be labelled h1
through h6, all with the content type Inline6:

type Heading = (h1|h2|h3|h4|h5|h6)[Inline]

More, we have a difference operator L1\L2 that allows to specify a set of labels L1 without
another set of labels L2 and that is mostly useful to specify any label except a finite set in
this way: ~\(l1|...|ln). Such use is as much common that we have an abbreviation for it:
a “negation” operator ^... that stands for ~\.... For example, we can use the negation
operator in the following way:

match v with

^(h1|h2)[Inline]*, (h1|h2)[val c as Inline], Any -> ...

where we extract the content of the first h1 or h2 label in the given value, ignoring all the
other labels prior to this.

Recursive Types

XDuce supports recursive types for describing arbitrarily nested structures. Consider the
following definitions:

type Fld = Rcd*

type Rcd = name[String], folder[Fld]

| ( name[String], url[String], (good[] | broken[]) )

The mutually recursive types Fld (“folder”) and Rec (“record”) define a simple template
for storing structured lists of bookmarks, such as might be found in a web browser; in this
example a folder is a list of records, while a record is either a named folder or a named URL
plus a boolean indicating whether the link is good or broken. We’ll use these types to build
an example on recursive types in section 2.1.5.

5spurious empty nodes inside sequences of values are removed by the value constructors so that the given

definition is a supertype for any possible value
6in current version (0.4.0) the line above won’t work but we must write ~(h1|h2|h3|h4|h5|h6)[Inline]

instead. This is to make parsing easier (personal communication with the author). See also note in section

2.2.1
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For theoretical reasons (to limit expressiveness of types to tree regular grammars instead
of tree context-free grammars) we impose a constraint on the kind of recursion you can
specify in a type. Specifically we require that type definitions don’t have recursion “at the
top-level” i.e. that either they don’t have recursion at all or that if there is recursion this
will be only inside subtrees. For example in the following:

type X = X | ()

X is not a well formed type because recursion is at top-level, while in the following:

type Y = a[ Y | () ]

Y is a well formed type (recursion is not at top-level).
Note that this doesn’t exactly means that whenever we have a type name at top-level

that causes a definition to be recursive we have a recursion “at top-level”.
Actually the example on folders above has the following structure:

type F = R*

type R = ..., folder[F] | ...

In this example, that is well formed, the presence of R at top-level inside the definition of
F leads to a recursion of F within a subtree; said in other words, F is recursively defined
because it’s possible to “reach” the type itself from its definition expanding type names you
can find inside (R in the example), but it’s not recursive at top-level because you can reach it
from its definition only within subtrees and never at top-level. This notion of “reachability”
is precisely formalized in section 2.2.3 where it’s unsurprisingly used to define recursion at
top-level.

2.1.3 Pattern Matching

So far we’ve focused on building values. We now turn our attention to decomposing existing
values by pattern matching. We’ve already introduced pattern matching in section 1.2 but
let us make another simple example.

Suppose to have a value whose label describes an Internet protocol name and consider
you wish to create an URL string from it. You could use an expression like this (the binary
operator ^ is a string concatenation):

match v with

www[String as s] -> "http://" ^ s

| email[String as s] -> "mailto:" ^ s

| ftp[String as s] -> "ftp://" ^ s

This pattern match branches depending on the top label (www, email or ftp) of the input
value and evaluates the corresponding body expression, which prepends the appropriate
string to the variable s, which is bound to the content the label in the input value v.
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In general, a pattern match expression takes an input value and a set of clauses of
the form “pattern -> expression”. Given an input value, the pattern matcher finds the
first clause whose pattern matches the value. It extracts the subtrees corresponding to
bound variables in the pattern and then evaluates the corresponding body expression in an
environment enriched with these bindings.

Patterns can be nested to test for the simultaneous presence of multiple labels and extract
multiple subtrees, as in following pattern:

person[name[String as n], email[String as e]]

where the text content of the label name is bound to the variable n and the text content
of the label email is bound to the variable e. Also, the logical-or can be expressed by the
union operator:

email[String as s] | tel[String as s]

Indeed, XDuce patterns have exactly the same form as type expressions, except that they
may include variable binders of the form “pattern as x”7 (which checks if there is a match
between the input value and pattern and if so “binds” the variable to the value — i.e.
assigns the value to the variable). We demand that, for any input value, a pattern yields
exactly one binding for each variable (we call this condition “linearity”, see section 2.2.3 for
a formal definition). Thus, a pattern like

email[String as e] | tel[String as t]

is forbidden because at least one of the variables will no be bound, no matter the input
value is, whereas

email[String as e]*

is forbidden because variable e could have any number of bindings.
Since patterns are just types decorated with variable binders, we can even use patterns

to perform dynamic typechecking. For example, the pattern

person[Name, Email+, Tel+]

matches the subset of elements of Person that contain a value of type Name followed by one
or more values of type Email and then one or more values of type Tel. This capability is
beyond the expressiveness of pattern matching facilities in conventional functional languages
such as ML and Haskell.

7there are two equivalent syntaxes for bindings, the one presented in the text is the newest one but you

can use as well the old syntax “val x as pattern”. See section 2.4.1 for a discussion on the binders’ syntax



2.1. HIGHLIGHTS 19

First-Match Semantics

XDuce’s pattern matching has a “first-match” semantics. That is, a pattern match expres-
sion tries its clauses from top to bottom and fires the first matching one. This semantics
is particularly useful to write default cases. For example, in the following pattern match
expression

match v with

person[name[val n as String], Email+, Tel+] -> ...

| person[name[val n as String], Any] -> ...

the first clause matches when the input person value contains both emails and tels, and the
second clause matches otherwise (remember that Any is a type that matches any values, see
section 2.1.2). If such overlapping patterns were not permitted, we would have to rewrite
the second pattern so as to negate the first one, which would be quite cumbersome.

What if none of the clauses match? As we’ll see in the next section, XDuce performs a
static exhaustiveness check so that such a failure can never arise.

Exhaustiveness and irredundancy checks

A pattern is ambiguous if it yields multiple possible parses of some input value. For example,
the following is ambiguous.

match v with

(a[]|b[])*, (val x as b[]), (a[]|b[])* -> ...

Take the input value b[],b[]. There are two parses for this value. One assigns the first b
to the leftmost b[] pattern and the second b to the middle b[] pattern. The other parse
assigns the first b to the middle b[] pattern and the second b to the rightmost b[] pattern.

Usually, an ambiguous pattern signals a programming error. However, XDuce authors
have found that, in some cases, writing ambiguous patterns is reasonable, therefore they
decided to yield a warning for ambiguity rather than an error. In the case that the user
writes an ambiguous pattern and ignores the warning, the semantics of pattern matching is
to choose an arbitrary parse among multiple possibilities (“nondeterministic semantics”).

Type Inference

The type annotations on pattern variables are normally redundant. For example, in the
following pattern match taking values of type Person*:

match ps with

person[name[String as n], Email*, Tel?], Person* as rest

-> ...

| ...
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the type “String” of the variable n and the type “Person*” of the variable rest can be
deduced from the input type and the shape of the patterns. XDuce supports a mechanism
that automatically infers such type annotations. With type inference, the example above
can be rewritten as follows.

match ps with

person[name[val n], Email*, Tel?], val rest

-> ...

| ...

i.e. it’s possible to use “bare” variables whose type will be computed from the compiler.
From the examples we have seen, it might appear that, whenever a pattern contains a

binding of the form (T as x), the inferred type for x is T itself. It is not always the case,
however, as type inference may compute a more precise type than T.

Formally, the syntactic form val x is an abbreviation for val x as Any8. So, XDuce
has not “true” bare variables but it requires type annotations on all pattern variables, only
that type inference mechanism allow them to be larger than necessary. The actual types of
the variables are inferred by combining the types given by the programmer with the types
discovered by propagating the input type through the pattern. For example, the pattern

match v with

(val head as ~[Any]), val tail -> ...

binds head to the first labelled value in the input sequence and tail to the rest of the
sequence. The types inferred for head and tail depend on the input type. For example, if
the input type is (Email|Tel)*, then we infer (Email|Tel) for head and (Email|Tel)*

for tail. Indeed, if the input type is (Email*,Tel), then we infer (Email|Tel) for head
and (Email*,Tel)? for tail. This combination of declared and inferred structure is useful
since it is often more concise to write a rough pattern (like the above ~[Any] pattern) than
a precise one. In addition, if the input type is changed later on, we may not have to change
the pattern, since the type inference will recompute appropriate types for the variables.

2.1.4 Functions

Let us illustrate them with an example. Suppose we want to extract from a given value of
type Person* (as it’s defined in 2.1.2) all the entries with telephone numbers. We can use
the following function:

8remember that val x as Any is the old syntax for the variable binder; author says that this old syntax

remains for backward compatibility but there are many valid reasons to retain it — bare variables is one of

these. See 2.4.1 for a discussion
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(* conversion subroutine *)

fun make_tel_book (val ps as Person* ) : person[Name,Tel]* =

match ps with

person[name[val n], tel[val t], Email*],

val rest as Person*

-> person[name[n], tel[t]], make_tel_book(rest)

| person[name[val n as String], Email*], val rest as Person*

-> make_tel_book(rest)

| ()

-> ()

Note that the header shows that function takes a value ps of type Person* and returns
a value of type person[Name,Tel]*.

The body of the function uses a pattern match to analyze ps. In the first case, the
input sequence has a person label that contains a tel label; we pick out the name and
tel components from the person, construct a new person label with them, and recursively
call make tel book to process the remainder of the sequence. In the second case, the input
sequence has a person label that does not contain a tel label; we simply ignore this person
label and recursively call make tel book. In the last case, the input sequence is empty; we
return the empty sequence itself.

Note the “functional flavor” of XDuce and specifically its ML inheritance (the style
of comments, the syntax of both the match construct and the functions, the code blocks
conceived as expressions): this is the reason why author asserts that is a functional language.
However XDuce is a first–order and not an high–order functional language, so you can’t
pass functions as arguments as in ordinary functional languages.

You can also define functions with multiple arguments. The syntax is the following:

fun f(P1)(P2)...(Pn): T = e

For example XDuce uses functions with multiple arguments for basic mathematical opera-
tions. Here’s an excerpt of the include file pervasive.q that contains declarations of several
built-in functions:

...

extern iplus : (Int)(Int) -> Int

extern iminus : (Int)(Int) -> Int

extern imul : (Int)(Int) -> Int

extern idiv : (Int)(Int) -> Int

extern imod : (Int)(Int) -> Int

extern rplus : (Float)(Float) -> Float

extern rminus : (Float)(Float) -> Float

...
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Finally a last note about the structure of a XDuce program. A XDuce program is a set of
type definitions, (possibly unnamed) global variable definitions and function definitions, in
any order. There is neither a “main” function nor a starting term with which to begin the
execution. The execution of the code is a “side–effect” of the evaluation of the expressions
to assign to the variables; evaluation is performed from the top to the bottom of the code;
this will possibly invoke also code inside function bodies.

2.1.5 Functions and Output types

XDuce uses types for various purposes. The most important is in checking that the values
that may be consumed and produced by each function definition are consistent with its
explicitly declared argument and result types.

For example, consider the following function definition.

fun make_person (val nm as String)(val str as String) : Person =

person[name[nm],

(if looks_like_telnum(str) then tel[str] else email[str])]

The first line declares that the function make person takes two parameters nm and str of
type String and returns a value of type Person. (The val keyword in the function header
is a signal that the following identifier is a bound variable.) In the body, we create a tree
labelled person that contains two subtrees. The first is labelled name and contains the string
nm. The second is labelled either tel or email, depending on whether the argument str
looks like a telephone number or an email (according to some function looks like telnum
defined elsewhere). As a result, the type of the whole body is this:

person[name[String], (email[String] | tel[String])]

Finally, we check that this type is a subtype of the annotated result type Person.
Another use of subtyping is in checking the type of an argument to a function call

against the parameter type given by the programmer. For example, if we have the function
definition

fun print_fields (val fs as (Name|Tel|Email)*) : () =

...

we can apply it to an argument of the following type:

Name,Email*,Tel?

Note, again, that, though they are syntactically quite different, the argument type and the
parameter type are in the subtype relation (the ordering constraint in the argument type is
lost in the parameter type, yielding a strictly larger set).
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Folder Manipulation

Consider again the types described in section 2.1.2:

(* type of the input document *)

type Fld = Rcd*

type Rcd = name[String], folder[Fld]

| ( name[String], url[String], (good[] | broken[]) )

Remember that a folder is a list of records, while a record is either a named folder or a
named URL plus a boolean indicating whether the link is good or broken. We can define
the following functions:

fun tidyFolder (val fl as Fld) : Fld =

match fl with

Rcd as record, Fld as folder

-> tidyRecord(record), tidyFolder(folder)

| ()

-> ()

fun tidyRecord (val rc as Rcd) : Rcd? =

match rc with

name[String as nm], folder[Fld as fl]

-> name[nm], folder[tidyFolder(fl)]

| name[String as nm], url[String as s], good[]

-> name[nm], url[s], good[]

| name[String], url[String], broken[]

-> ()

The functions tidyFolder and tidyRecord traverse a bookmark list recursively, pre-
serving leaves with good links and dropping ones with bad links.

2.1.6 A Complete Example

Here’s a small but complete example, taken by section 2.5 in [HP03]. The task of this
program is to create, from an address book document, a telephone book document by
extracting just the entries with telephone numbers.

After including the library for import/export from/to XML we specify the type defini-
tions for input and output documents.

(* needed to use load_xml / save_xml *)

import "xml.q"

(* type of the input document *)
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type Addrbook = addrbook[Person*]

type Person = person[Name,Tel?,Email*]

type Name = name[String]

type Email = email[String]

type Tel = tel[String]

(* type of the output document *)

type TelBook = telbook[TelPerson*]

type TelPerson = person[Name,Tel]

After the declarations we have the input processing: we load an address book document
from a file and validate it against the type Addrbook. Note that there can be a run-time
error here if document doesn’t conform to the type.

(* import and validate the document *)

let val doc = load_xml("mybook.xml")

let val valid_doc = validate doc with Addrbook

The “main” code extracts the content of the top label addrbook, send it to the function
make tel book (defined below) and enclose the result with the label telbook.

(* out_doc = output document *)

let val out_doc =

match valid_doc with

addrbook[val persons as Person*] ->

telbook[make_tel_book(persons)]

Finally, we show the result on the console and export it to an XML file. Note the use of a
dummy variable “ ” to simulate a procedure call.

(* show result *)

let val _ = display("Result:")

let val _ = print(out_doc)

(* and export to XML *)

let val _ = save_xml("output.xml")(out_doc)

At last we include the function defined in section 2.1.4.

(* conversion subroutine *)

fun make_tel_book (val ps as Person* ) : TelPerson* =

match ps with

person[name[val n], tel[val t], Email*],

val rest as Person*

-> person[name[n], tel[t]], make_tel_book(rest)

| person[name[val n as String], Email*], val rest as Person*
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-> make_tel_book(rest)

| ()

-> ()

The example above is complete as it correctly works without modifies with the last
version of the tool.

2.2 Core Language Definition

Here I give a formal definition of a subset of the surface language of XDuce as it has been
implemented in the last version of the tool (0.4.0)9.

Although this formalization is very close to that author gives in [HP03] there are some
differences, mostly trivial but a few significative. Specifically there are two significative
differences:

1. I remove from the language the explicit pattern definition statement because it’s not
implemented in the current release

2. I change the top-level definition of the language to make it closest to the implemented
language

I wonder these differences as Hosoya works on the tool from at least three years updating
it slowly but constantly, so I don’t think these differences are to ascribe to an immaturity
of the code. Furthermore, while discordance between the top-level of the implementation
and that of formalization have no conceptual differences so that discrepancies are needless
confusing, it’s my opinion that explicit pattern definitions are not an useful feature in the
language. I’ll argue about these points in section 2.3.

Note that this formalization is more near to that I give for XRel so that it’s easier to
view syntactic differences between XRel and XDuce.

2.2.1 Labels and Label Classes

Assume a (possibly infinite) set L of labels, ranged over by l. Label classes are defined by
the following syntax:

L ::= l specific label

| ∼ wildcard label

| L | L union

| L \ L difference

9I remove from the implemented language attributes and some accessory features like the string concate-

nation operator “^” so to have a formalization more near to that given in [HP03] and similar to that of the

XRel language
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We write a negation ^L as an abbreviation of ~\L.
The semantics is that obvious (you can find its formalization in [HP03]).
Note that in the current version of the tool (0.4.0) you can write l[...] or ^L[...] but

you can’t use directly unions and differences. To use them you have to write ~(L1|...|Ln)[...]

and ~(L1 \ L2)[...] (I’ve contacted the author by email and he said me that this is a trick
to make parsing easier).

2.2.2 Values

A value v is a sequence of base values and labelled values, where a labelled value is a pair
of a label and a value. We use the following syntax for values:

v ::= ( ) empty sequence

| l[v] tag with label l

| v , v sequence

| s literal string (e.g. “hello”)

| i literal integer (e.g. 5 or -6)

| f literal float (e.g. 5.0 or -6.2)

where s ranges over double quoted literal strings, i ranges over integers and f ranges over
floating numbers (differently by the author I prefer to explicitly formalize base values, see
section 2.3). Integer and float numbers are syntactically different so that there is no confu-
sion between them (e.g. 5 is a integer, 5.0 or 5. is a float).

2.2.3 Types and Patterns

We first define patterns, then we will simply define types as the set of patterns which lack
variable bindings.

We assume a countably infinite set of type names, ranged over by X, and a countably
infinite set of variables, ranged over by x. Pattern expressions (or just patterns) are defined
as follows:

P ::= X type name

| L [P ] labelling

| ( ) empty pattern

| P , P concatenation

| P | P union

| P∗ repetition (zero or more)

| P as x variable binder

| val x as P variable binder (old syntax)
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| String string type

| Int integer type

| Float float type

| s literal string (e.g. “hello”)

| n literal number (e.g. 5.0 or -6)

It’s possible to use L[] as an abbreviation of L[()]. Also we can define the other regular
expression operators as syntactic sugar:

P? = P | ()

P+ = P, P*

Furthermore, val x can be used to mean val x as Any, where Any is defined below. Finally
we assume the following fixed type definition10:

type Any = ( ~[Any | Int | Float | String] )*

Linearity constraints on patterns

Let BV(P) be the set of variables bound in the pattern P. We say that P is linear iff for any
subphrase P’ of P the following conditions hold:

x /∈ BV (P1) if

�
P ′ = P1 as x

P ′ = val x as P1

BV (P1) ∩BV (P2) = ∅ if P ′ = P1 , P2

BV (P1) = BV (P2) if P ′ = P1 | P2

BV (P1) = ∅ if P ′ = P1∗

Types

Type expressions T (or just types) are patterns that have no bound variables, i.e. such that
BV (T ) = ∅. Types are ranged over S, T, U, etc.

Well-formedness of types

Types are well-formed when they don’t have recursion “at the top-level” of theirs definitions,
i.e. when they have not a recursive definition or there is recursion only inside subtrees. For
example in the following

10Implemented language has other built-in type definitions as AnyElm but they’re not interesting for our

purposes
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type X = X | ()

X is not a well formed type, while in the following

type Y = a[ Y | () ]

Y is a well formed type (recursion is not at top-level).
Formally consider a mapping E from type names to theirs bodies. This means that when

we have a declaration as the following:

type X = T

we write E(X) to intend the right-hand side of the declaration (T in the example above).
For a given type T, we define the set S(T) of type names reachable from T at the top level
as the smallest set satisfying the following

S(T ) =

8>><>>:
S(E(X)) ∪ {X} if T=X

S(T1) if T = T ∗1
S(T1) ∪ S(T2) if T = T1, T2 or T = T1 | T2

Ø otherwise

We then require that every type is not reachable at the top level from itself. Formally we
require that the set E of type definitions satisfies

X 6∈ S(E(X)) ∀ X ∈ dom(E)

Note that differently from the author we only need to apply this check to types because
other patterns can’t be recursive. Apart this, formalization above is the same author gives.

Semantics

Semantics is almost the same of the author, the only significative difference is that we can
merge the matching semantics of types with that of patterns, as types are considered a
subset of patterns.

I rewrite below the semantics of patterns as there are some trivial differences with that
formalized in [HP03] (specifically the new binding syntax, the explicit semantics of base
values and the rule EP-Var adapted to expand type names only).

The semantics of patterns is given by the relation v ∈ P ⇒ V read “value v is matched
by P, yielding environment V”, where an environment V is a finite mapping from variables
to values (written x1 : v1, . . . , xn : vv). The concatenation of environments binding distinct
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variables is written with a comma.

v ∈ P ⇒ V

v ∈ (P as x) ⇒ x : v, V
(EP-As1)

v ∈ P ⇒ V

v ∈ (val x as P ) ⇒ x : v, V
(EP-As2)

() ∈ () ⇒ ∅ (EP-Emp)

E(X) = P v ∈ P ⇒ V

v ∈ X ⇒ V
(EP-Var)

v ∈ P ⇒ V l ∈ L

l[v] ∈ L[P ] ⇒ V
(EP-Lab)

v1 ∈ P1 ⇒ V1 v2 ∈ P2 ⇒ V2

v1, v2 ∈ P1, P2 ⇒ V1, V2
(EP-Cat)

v ∈ P1 ⇒ V

v ∈ P1 | P2 ⇒ V
(EP-Or1)

v ∈ P2 ⇒ V

v ∈ P1 | P2 ⇒ V
(EP-Or2)

vi ∈ P ⇒ Vi ∀i
v1, . . . , vn ∈ P∗ ⇒ V1, . . . , Vn

(EP-Rep)

i ∈ i ⇒ ∅ (EP-LitInt)

i ∈ Int⇒ ∅ (EP-Int)

f ∈ f ⇒ ∅ (EP-LitFloat)

f ∈ Float⇒ ∅ (EP-Flt)

s ∈ s ⇒ ∅ (EP-LitStr)

s ∈ String⇒ ∅ (EP-Str)

Note that linearity ensures that environments that are concatenated in the conclusions
of rules EP-As1, EP-As2, EP-Cat and EP-Rep have different domains (e.g. x 6∈ dom(V )
always holds in rules EP-As1 and EP-As2).
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Note also that the application of the rule EP-Var will always yield an empty environment
V, because X refers to a type name, and types have no binders. The use of this rule is a
little trick to avoid to define an apposite relation v ∈ T .

Finally consider the match of base values: the value 5 will match with itself or Int but
it will won’t match with 5.0 or Float; similarly 5.0 matches with itself and with Float but
it will won’t match with 5 or Int and “5” won’t match neither with Int or Float. Full
language has built-in functions for explicit typecasting, but implicit typecasting is never
allowed.

I skip all static semantics because differences with that of [HP03] are trivial and similar
to those I’ve made above on pattern matching semantics.

2.2.4 Terms

We assume given a countably infinite set of function names, ranged over by f (we’ll see
function definitions in the next section).

The syntax of terms e is defined by the following grammar:

e ::= l [e] tag with label l

| e , e concatenation

| x program variable

| v value

| f(e) application

| match e with P̄ -> ē pattern match

where we write “P̄ -> ē” as an abbreviation for the n-ary form “P1 -> e1 | ... | Pn ->

en”.
We also allow the following shorthands:

let P = e1 in e2 ≡ match e1 with P -> e2

if e1 then e2 else e3 ≡ match e1 with True[ ] -> e2, False[ ] -> e3

e1 ; e2 ≡ match e1 with Any -> e2

A few considerations on constructs above:

- the let statement is that used inside terms, for example inside function bodies, and
it’s different from that you can use at top-level to define a “global” variable

- e1;e2 is useful when you want to discard the value of e1 retaining only that of e2;
this operator can be useful for example when e1 is a function call that has an useful
“side-effect” (e.g. printing)

- Note that the “else” part of the if-then-else construct is not optional
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Again, we won’t replicate static semantics here because differences with [HP03] are
trivial.

2.2.5 Top-level language

I propose here a formalization of the top-level of the language completely different from that
given by the author in [HP03] but closest to the implementation.

Program ::= Definition∗
Definition ::= TypeDef

V alDef

FunDef

TypeDef ::= type X= T

V alDef ::= let P= e

FunDef ::= fun f(P ): T = e

Note that in the full implemented language there are other things at top-level such as the
construct “import dtd” to statically import DTD schemas into XDuce types, a support
for XML namespaces and other built-in constructs we’ll ignore here as we limit our formal
description to the core features11. More, for brevity I formalize (as author) only one-
argument functions because the extension to multi-argument functions is straightforward.

In [HP03] there are the evaluation rules for terms and the typing rules both for terms
and function definitions, but Hosoya never talks about the semantics of variable definitions
at top-level. However it’s straightforward to give an encoding from the top-level variable
definitions of XDuce implementation to the top level with an only starting term formalized
by Hosoya. For example, having a program with the following variable definitions:

let P1 = e1

let P2 = e2

...

let Pn = en

we have only to encode them in the following stand–alone term:

let P1 = e1 in let P2 = e2 in ... let Pn = en in ()

2.3 Differences with the Formalization of the Author

You can see an updated formalization of the language in [HP03]. Differences between for-
malization you find in this paper and my formalization are the following:

11To see a full list of them take at look at the source file parser.mly [XDu]



32 CHAPTER 2. XDUCE

- I remove “pat Y = P” because it’s not implemented in the current version of XDuce
(0.4.0). It was implemented in an old version? Author wish implement it in future? I
don’t know (see discussion below)

- for the modify above the formalization of linearity constraints on patterns becomes
simpler. We have not to “reach” bound variables inside patterns as Hosoya does; the
only names we can find inside pattern expressions are type names, but types have no
bindings so that we don’t need to look inside them.

- top-level definition of the language is different: Hosoya says that a program is a set of
type definitions, a set of pattern definitions, a set of function definitions and a starting
term. Actually this is a very good top-level design and it’s completely equivalent to
that really implemented so. . . why he has not implemented it? why to “invent” a
different syntax for global variable definitions? I can’t figure why

- I define types as patterns without bindings. This is actually what author does in a more
recent paper [Hos03] but here he describes only internal representation of patterns;
my contribution is to apply this simple idea to the surface language so to make its
description easier to read (both for improved conciseness and for the highlighting of
the strong relationship between the structure of the types and that of the patterns)

- I formalize base types and values: why author doesn’t? he says that he omits them
from the formalization because the modify is straightforward but my opinion is that
explicit formalization make things neater. For example one of my doubts when I begun
to study XDuce was if it’s possible to insert literal values inside types and patterns.
See discussion below for a list of reasons I think it’s better to explicitly handle base
types/values in formalization

Let us see main points above in details now.

2.3.1 Removal of Explicit Pattern Definitions

There is an essential difference between the implementation of XDuce (0.4.0) and its for-
malization as found in [HP03] or in other papers of Hosoya: the implementation lacks the
capability to define explicitly patterns with the instruction pat. In the papers there is a
declaration

pat X = P

which declares pattern variables, similar to the existing type variable introduced with type.
This difference is not trivial because from its presence we have or less the ability to write
recursive patterns and ultimately to make bindings at arbitrary depths.
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Because in [HP03] Hosoya talks about pat statement only in the formal definition of
the core language (and not in the informal description of the surface language), one could
suspect that its presence is only a trick he uses to make things simpler in formalization, and
that he never thought to use it for the “true” language.

However, in the following excerpts taken by [HP02], he claims that it’s possible write
recursive patterns in XDuce and gives an example.

Nothing prevents us from writing a single pattern that traverses a tree to an ar-

bitrary depth. For example, consider the following recursively defined type for binary

trees, with two forms of leaves, b[] and c[], and internal nodes labeled a,

type T = a[T],T | b[] | c[]

and the match expression

match t with

P -> ...

where P is recursively defined as follows:

pat P = a[P],T | a[T],P | x as b[]

The pattern P matches a tree that has at least one b[], and yields exactly one binding

of the variable x to one of the b[]s. Since P has the choice of patterns a[P],T and

a[T],P in this order, the first-match policy ensures that the variable x is bound to the

first b[] in depth-first order.12

Why this discordance between theory and practice? We can only wonder this discordance
also because the same author in the continuation of the excerpt above says that this feature
is unessential:

Although this “deep” matching is somewhat attractive, we are not sure about its

usefulness because, after obtaining the first b[] as above, it is not clear what to do to

get the next one, or more generally to iterate through all the b[]s in the input tree.

(By contrast, this sort of deep matching would be more clearly useful if we had chosen

the “all-matches” semantics instead.)

This opinion of the author and the fact he’s developing XDuce for three years make we
think that this discrepancy is not to ascribe to an “immaturity” of the code. We remark also
that other languages based on XDuce (namely CDuce and Xtatic) claim to allow recursive
patterns.

12Note two old things of this excerpt: bindings syntax is not updated and he talks about first match

policy inside a pattern



34 CHAPTER 2. XDUCE

2.3.2 Top-Level Language

There are some differences of the top–level language as it’s formalized with respect to as it’s
implemented. Actually I needed to perform several tests with the tool before to understand,
between other things, the followings:

- the syntax of variable definition at top-level is different from that of local variable
definitions inside functions

- type declarations, variable definitions and function definitions can be mixed (all exam-
ples in papers put types before other things). Mixing them could be useful to improve
code readability

- functions accept as formal parameters arbitrary patterns, not only sequences of vari-
ables with theirs types

To see why it could be useful to specify arbitrarily complex patterns as formal parameters
instead of sequences of binders consider the following example, where instead to specify a
match construct with one only clause as in this too much verbose code:

fun process(val v): ... =

match v with

root[a[String as s1], b[String as s2]] ->

(* ... use s1 and s2 ... *)

we can simply use the whole pattern as formal parameter as in this neater code:

fun process(root[a[String as s1], b[String as s2]]): ... =

(* ... use s1 and s2 ... *)

2.3.3 Base Types and Base Values

We draw attention to some aspects that are implicit in formalization, but which we initially
found confusing.

- it’s possible to insert literal values inside types and patterns. For instance, the type
3, int* denotes all lists whose first element is 3

- XDuce has no implicit typecasting mechanism (as I’ve discussed in section 2.2.3)

- Int and Float types never match against XML documents; instead, one must use
explicit tpyecasting functions from XML Strings to numeric types

- a pattern String,String could never match with a XML document, as there is no
pattern matching mechanism on strings (only on trees)
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2.4 Design Changes

In this section we will see some design changes and will see how authors motivated them.

2.4.1 Changes of the Binding Syntax

Table 2.1 reports the evolution of bindings’ syntax in XDuce through the time. Note how
syntax is changed three times taking 4 different syntaxes through the years.

Syntax Papers Still alive From
1 x[:P] [HVP00],[HP00] no 1999?
2 x [as P] [Hos01],[HP02] no 2000-1?
3 val x [as P] [HP03] yes 2002?
4 P as x [Hos03],[Hos04] yes 2003 (0.4.0)

Table 2.1: Evolution of bindings’ syntax in XDuce

Why author changed its mind so many times? My opinion is that, although syntax is
just an aesthetic problem, it is not easy to solve it in an optimal way.

For example the first choice (“x:P”) is elegant and similar to Pascal, but conflicts with
namespaces — consider x:uri:label[...]. The second author choice were to replace the
semicolon with the as operator obtaining “x as P” (or simply x for bare variables) – note
this is the actual syntax of XQuery. Why he changed its mind again? I guess he would
intended to avoid some subtle errors: a misspelled type name would be considered by the
compiler the name of a bare variable, so that an “undefined identifier error” would be never
signalled. So he added the keyword val. In this way the attempt of using a bare variable
is immediately identifiable from the presence of the keyword and wrong type names can be
detected as well.

Up to this point reasons behind author’s choices are simple to imagine, also without he
never talked about. But the last change is a little more demanding for our imagination:
why he changed a good syntax like “val x as P” with an equivalent one like “P as x”?

Because I don’t know real author motivations, I can only advance suppositions. The first
thing one can imagine is that he thought that the use of the val keyword made syntax less
readable as before, so that he would be intentioned to revaluate its last choice and return
to a syntax more similar to the old one. Note how the problem of bare variables was solved:
forcing the user to explicitly write “Any as x”. But actually also if definition of “normal”
typed variables is less verbose, the use of bare variables has become awkward, not so much
comfortable as before. This take me to a second supposition, that is my actual opinion: that
he changed its mind to suggest a programming style more type-oriented, and less abusing of
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“magic” untyped variables. In fact in the file “CHANGES” of the distribution of XDuce0.4.0
[XDu] author wrote that “the old syntax remains for backward compatibility”.

Note how the usefulness of the old syntax is as far to be obsolete. For example when we
declare a variable with the let statement in such a way:

let val x = ...

we are using it because the syntax of the let statement is “let P = ...” so that without
this “old” syntax we would need to write instead:

let Any as x = ...

2.4.2 Longest Match vs Arbitrary Match Policy

The match policy in pattern matching has undergone substantial changes.
There are two kinds of ambiguity in pattern matching. The first is when more than

one clause matches the same input. This has been resolved in all versions of XDuce by the
“first–match” policy, that is the first matching clause is taken.

The second kind of ambiguity is when the pattern of a single clause can match the
same value in different ways. In older versions of XDuce this was to resolved with the
“longest–match” policy, that earlier subpatterns of a sequence will “greedily” match as
much as possible. In newer versions of XDuce the policy is abandoned, the compiler gives
an “ambiguous match” warning, and at run–time it is not defined which match will be taken.

We adopt the newer solution of giving a compiler-warning for ambiguous patterns. Note,
incidentally, that the ambiguity check has been disabled in the most recent versions of XDuce
because it conflicted with the handling of attributes.

In this section I report both the reasons, the original one about why the longest match
is good and the last one about why the longest match is bad. Note how both motivations
are valid and how neither of one contradicts with the other.

Advantages of longest match policy

Old approach can be found in [HP02]. Here’s an excerpt.

The second form of ambiguity occurs when a single pattern can match a given value

in different ways, giving rise to different bindings for the pattern variables. [..] For

example, in the pattern

match e with

e1 as Email*, e2 as Email*

-> ...
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which splits a sequence of emails into two, it is ambiguous how many emails the variable

e1 should take. We resolve this ambiguity by adopting a “longest match” policy where

patterns appearing earlier have higher priority. In the example, e1 is bound to the

whole input sequence, e2 to the empty sequence. Again, an alternative design choice

would be to disallow such ambiguity. However, the longest-match policy can make

patterns more concise.

In this approach longest match policy is derived from first match policy, as explained in
this other excerpt:

The longest-match policy actually arises from these abbreviations and the first-match

policy. For example, Email* is defined as a pattern name Y that is recursively defined

as

pat Y = Email,Y | ()

and, with the first-match policy, the first branch (Email,Y) is taken as often as possible,

which accounts for the longest-match policy. The same argument is applied to the

other operators + and ?. Notice that the order of union clauses in the definitions of

the abbreviations matters for the semantics of pattern matching.

The longest-match policy can make patterns more concise. Consider the contents of an
HTML dl (description list), which is a sequence of type (Dt|Dd)*, where Dt (term) and Dd
(description) are defined as dt[...] and dd[...], respectively (the content types “. . . ” are not
important here). Suppose we want to format this sequence in such a way that each term is
associated with all the following descriptions before the next term (if any). We may write
an iteration for scanning the sequence.

match l with

dt[t], d as Dd*, rest

-> (* display term t with d, and do rest *)

|

() -> (* finish *)

Here, the first case matches a sequence beginning with dt, where we extract the content
of the dt and take as many as possible of the following dds, using the longest match. Note
that, without the longest match, it is ambiguous how many dds are taken by each of the
consecutive patterns (d as Dd*) and rest. If we rewrite this pattern to an unambiguous one,
the variable rest must be restricted not to match a sequence that begins with dd, resulting
in a somewhat more cumbersome pattern:

dt[t], d as Dd*, rest as ((Dt,(Dd|Dt)*) | ())
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Disadvantages of longest-match policy

We can find why longest-match policy has been dropped in the following excerpt by [Hos03].

Consider the following type definition

type Person = person[Name,Email*,Tel]

we can write the following pattern match for extracting the tel node from a given

person.

match person with

person[Name, Email*, (Tel as x)]

-> ... (* do something with x *)

This matches any values of type Person and binds x to the tel node. This pattern

happens to have the structure as the input type, but it is not necessary in general. For

example, we can replace the pattern Name,Email* in the above with the Any pattern,

which matches any sequences.

match person with

person[Any, (Tel as x)]

-> ...

Using Any is convenient since it allows us to just ignore the parts that we do not care

about. However, this idiom sometimes causes patterns to behave rather strangely in

the first-match semantics. Let us consider a slight variation. Suppose that the type

Person is actually defined as follows

type Person = person[Name,Email*,Tel?]

where the Tel part is now optional. Accordingly, the pattern for extracting this part

would become:

match person with

person[Any, (Tel? as x)]

-> ...

However, in the first-match semantics, this pattern always binds x to the empty se-

quence. Understanding why is slightly complicated. First, the Any pattern tries to

capture the longest possible sequence. This is because Any is actually recursively

defined as

type Any = ~[Any],Any | ()

(where ~ matches any label and () is the empty sequence type) and the first choice is

taken as often as possible. Likewise, the Tel? pattern also tries to capture the longest

possible sequence since it is actually an abbreviation of

Tel | ()
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and the first choice is taken first. Finally, when these two patterns are concatenated,

the first one is given higher priority. Consequently, the Any pattern always captures

the whole sequence, leaving the Tel? pattern only the empty sequence.

In our new design, when a given pattern can parse an input value in multiple ways,

then the system blames it as ambiguous. For example, the pattern in the last example

is ambiguous since any person’s content that ends with a tel can be parsed in two ways.

To make it unambiguous, we need to be more explicit, e.g.,

match person with

person[^tel[Any]*, (Tel? as x)]

-> ...

(where ^tel matches any label except tel). The pattern is now slightly more verbose,

but its meaning is clearer.

In TODO file authors commented to reconsider the ambiguity condition: “too strong right
now”

2.4.3 Changes of Type Inference and of Pattern Constraints

Type Inference For Non-tail Position Variables

From version 0.2.0 type inference for patterns supports inference on non-tail pattern vari-
ables. Here’s an excerpt with a description of this improvement (footnote at page 15 of
[HP03])

The power of the type inference scheme has been improved from the one described in

our previous paper. In the previous one, we were able to infer precise types only for

variables in tail positions. For example, in the pattern

match v with

(val head as ~[Any]), val tail

we could infer a precise type for tail but not for head (we simply extracted the type

[Any] directly from the pattern, which is less precise). This was due to a naiveness

of the inference algorithm that we used at that time. However, since then, we have

developed a new algorithm that overcomes this limitation and have incorporated it in

the current XDuce.

Top-level recursion forbidden

As of version 0.2.2 of XDuce top-level recursion has been completely forbidden (before it
was allowed for tail variables). For example, we can no longer write

type X = a[],X | ()



40 CHAPTER 2. XDUCE

or:

type X = a[],Y | ()

type Y = b[],X | c[]

2.4.4 Dropped subtagging

Subtagging is a feature to abstract over groups of labels. It has been dropped as of version
0.3.0 of XDuce, because it conflicts with the handling of attributes.

Hosoya describes subtagging in Section 2.5 of [HVP00]:

In XML processing, we sometimes encounter situations where we have to handle a large

number of labels and it is convenient to organize them in a hierarchy, in the style of

object-oriented languages. This leads us to support a notion of “subtagging” in our

type system, allowing subtyping between types with different labels. This feature goes

beyond the expressive power of DTDs, but a similar mechanism called “substitution

groups” can be found in XML-Schema. The subtagging relation is a reflexive and

transitive relation on labels. We declare subtagging explicitly with a set of global

subtag forms. For example, the following declares that the tags i (italic) and b (bold)

are subtags of fontstyle:

subtag i < : fontstyle subtag b < : fontstyle

In the presence of these declarations, we have the subtype relations

i[T] < : fontstyle[T] b[T] < : fontstyle[T]

for all T. These relations allow us to collapse two case branches for i and b into one

for fontstyle, when both branches behave the same. This use of subtagging is similar

to the common technique in object-oriented programming of defining an abstract class

fontstyle with subclasses i and b.
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XRel

This chapter describes a stand–alone tool I’ve written to study the algorithms of XDuce;
I’ve called it XRel (XML Regular Expression Language).

XRel incorporates the two main features of XDuce — tree regular expressions types and
tree regular expression pattern matching — to make pattern matching with XML documents.

XRel is a test–harness for the XDuce algorithms, and a porting of these algorithms from
ML to Java. Note that it lacks recursive functions: the reason is that it’s our intention to
discard it as a stand-alone tool in favor of an integration with Hipi. Hipi is a concurrent
language based upon π–calculus and developed as master thesis by Paolo Milazzo at the
university of Bologna [Mil03]. Because Hipi has functions and all the other basic constructs
of a programming language these features are not repeated in XRel.

Despite its minimality (it has not much more than a typeswitch statement1 with which
it can make pattern matching) all the algorithms of XDuce are still implemented: it has
subtyping, type inference, static checks on types and the pattern matching algorithm.

In this chapter we describe the syntax of the language and discuss its functionalities.

3.1 Usage

XRel can be downloaded from my home page at the following address:

http://www.cs.unibo.it/~bisi/thesis

It can be run either with the .class files present in the bin directory or with the jar file
XRel.jar in the main folder. All that it requires to work is a JVM version 1.3 or later and

1It’s a lucky case that after we’ve chosen the name “typeswitch” for our pattern matching construct

inspiring to Modula 3 we discovered that also XQuery designers made the same choice :-)

41



42 CHAPTER 3. XREL

two jar files that are part of the Xerces2 distribution: xercesImpl.jar and xml-apis.jar.
The most convenient method to allow the program to locate these two files is to copy them
in the main folder of the distribution so that from the main folder you can run XRel with
the line:

java -cp bin;xercesImpl.jar;xml-apis.jar xrel.XRel ...

or simply with:

java -jar XRel.jar ...

Note that in this last case it’s required that you copy xml-apis.jar and xercesImpl.jar

in the current working directory, while in the first case you can specify the path of these
files as you wish3.

XRel can be run with one or two arguments: if only the name of a program is specified,
it will be compiled and correctness checks will be applied to it. If both a program and an
XML document are specified, the program will be compiled, statically verified and passed to
the run-time pattern matching algorithm that will check the match of the document against
the patterns of the program.

In the folder “examples” you can find a few ready examples. Note that XRel program
files have the extension “.xre”.

For instance to execute “FirstExample.xre” you need to write from the main folder
either:

java -cp bin;xercesImpl.jar;xml-apis.jar xrel.XRel

examples\FirstExample.xre examples\mybook.xml

or simply:

java -jar XRel.jar examples\FirstExample.xre examples\mybook.xml

3.2 Our First Example

Let us see a simple example that will immediately reveal the syntax of the language. The
following is adapted from the classical XDuce example where we need to convert an address
book in a telephone book. However, since XRel lacks functions, we need to make it simpler.
Suppose then we have an address book (actually a database of peoples whose records have a
name, an optional telephone number and one or more e-mails) and that we want to extract
the name and the telephone from the first record that contains a telephone number.

We expect to have in output an XML fragment like:
2Xerces is an XML parser written by the Apache Foundation. See [Fou] for more information
3for advanced users only: if you want to place these two files in some special place and then again use

the jar file you can change the meta-inf\MANIFEST.MF inside XRel.jar to correctly locate them
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<first><name>...</name><telephone>...</telephone></first>

or the string "telephone not found" if no record exists with a telephone number. Here’s
the code:

typedef Addrbook = addrbook[Person*];

typedef Person = person[Name,Tel?,Email+];

typedef Name = name[String];

typedef Tel = tel[String];

typedef Email = email[String];

import addrbook[Person* as P];

typeswitch(P)

{

// this pattern filters out the first record with a telephone

case

person[Name,Email+]*,

person[name[String as firstName],

tel[String as firstTel],

Email+],

Person* :

printf(first[name[firstName],telephone[firstTel]]);

// no existing telephones

default: printf("no telephone found");

}

The first rows of the program are type declarations. Note how syntax of regular expres-
sion types is exactly the same as that of XDuce, while the syntax of the statement itself is
slightly retouched to make it more C–like (“typedef x = P;” instead of “type x = P”).
Comments follow C++/Java conventions.

The import statement declares the pattern against which to match the input value:
when the program loads the XML document, it checks whether it matches with the pattern
“addrbook[Person* as P]”, i.e. if it belongs to the type denoted by the regular expression
addrbook[Person*]. If so, the list of persons inside the root tag are bound to the variable
P that is passed to the typeswitch construct (the equivalent of the match construct of
XDuce); if not, the execution aborts.

The typeswitch construct above has two clauses: the first one handles documents with
a telephone, the second one handles all the remaining cases (documents that don’t have a
telephone).

The pattern inside the first clause has the following structure: the first part person[Name,Email+]*
skips all persons without any telephone, the second part person[...] selects the first per-
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son that has a telephone and the third part Person* skips all remaining persons. When
the central part of this pattern matches with a person it binds the content of the name tag
with the variable firstName and the content of the tel tag with the variable firstTel.

3.3 Formal Definition

This section describes the syntax and the semantics of the language formally4.
Each XRel program is a sequence of zero or more type declarations, followed by a manda-

tory import instruction, an optional export instruction and an optional typeswitch state-
ment, in that order.

As in XDuce, type declarations are usually used both to describe the type of the XML
document in input (its schema) or parts of it and parts of the output type to which ex-
pressions of the program need to conform. The import instruction performs a first match
with the document in input; the pattern we put here should contain at least the bound
variable to use with the typeswitch, if present. The export instruction gives a way to
specify a “supertype” to which all the expressions of the program need to conform. Finally
the typeswitch statement let us make complex pattern matching which produces different
outputs on different alternatives.

Here’s the syntax of the top–level of the language:

Program ::= TypeDeclaration ∗ Import Export? TypeSwitch?

TypeDeclaration ::= typedef X= T ;

Import ::= import P ;

Export ::= export T ;

TypeSwitch ::= typeswitch (x) { Clause ∗ DefaultClause? }
Clause ::= case P : CodeBlock

DefaultClause ::= default: CodeBlock

CodeBlock ::= ;

Printf

{ Printf ∗ }
Printf ::= printf(e);

where X ranges over type names, T ranges over type expressions, P ranges over patterns, x
ranges over variables names and e ranges over expressions.

4see also the appendix A for a tool-generated grammar
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Note that as discussed in the introduction of the chapter the language is reduced to a
minimal core (for example we have only a printf statement in code blocks inside clauses).

Type names and program variables are identifiers and their syntax is defined as usual.
In the next paragraphs we’ll see the formal definitions for each of the other categories.

3.3.1 Types and Patterns

As for XDuce we first define patterns, and then define types as patterns containing no
variable binder. Pattern expressions (or just patterns) are as follows:

P ::= X type name

| P as x variable binder

| l [P ] tag with label l

| ∼[P ] tag with any label

| ( ) empty pattern

| P , P concatenation

| P | P union

| P∗ repetition (zero or more)

Here X ranges over type names and x ranges over variable names.
Operators are as usual in regular expressions: “P,P” is concatenation, “P|P” is choice,

“P*” is zero or more repetitions, “P+” is one or more repetitions and “P?” is zero or one
occurrence. Additionally to the standard syntax for string regular expressions we have a
syntax for tagged subtrees l[P] and a symbol “∼” meaning any label which allows one to
specify subtrees with generic label but known content. Our base type is the empty pattern
“( )”. Finally we can bind a variable x to a fragment P of the pattern with the “as” operator,
with “P as x” (note how we retain only the updated binding syntax of XDuce 2.4.1).

It’s possible to use l[] or ∼[] as abbreviations of l[()] and ∼[()]. We can define the
other regular expression operators as syntactic sugar:

P? = P | ()

P+ = P, P*

We introduce also two other base types with syntactic sugar: the “String” type and the
literal strings, using pseudo–tags for them

String = #String[()]

"..." = #"..."[()]

The String is mainly used to code the #PCDATA sections of XML documents, while
string literals let us to match against specific text contents. Note that the names for these
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pseudo–labels are chosen in such a way that they don’t clash with normal XML labels, as
XML labels never begin with the “#” symbol.

We don’t support numeric base types because we want to make our base types as simple
as possible and also to avoid issues concerning the choice of an appropriate typecasting
policy.

Furthermore we assume the following fixed type definition

typedef Any = ~[Any | String]*;

Finally define type expressions T (or just types) as the set of patterns which lack the
“as” operator.

Well Formed Types

XRel types need to be non–recursive at top–level. We give the same formalization we’ve
seen in the previous chapter for XDuce (2.2.3). We assume a mapping E from type names
to theirs bodies. This means that when we have a declaration as the following:

typedef X = T;

we write E(X) to intend the right-hand side of the declaration (T in the example). For a
given type T, we define the set S(T) of type names reachable from T at the top level as the
smallest set satisfying the following

S(T ) =

8>><>>:
S(E(X)) ∪ {X} if T=X

S(T1) if T = T1∗
S(T1) ∪ S(T2) if T = T1, T2 or T = T1 | T2

Ø otherwise

We then require that every type is not reachable at the top level from itself. Formally we
require that the set E of type definitions satisfies

X 6∈ S(E(X)) ∀ X ∈ dom(E)

Linear Patterns

Let BV(P) be the set of variables bound in the pattern P. For example in the following
pattern P:

l1[P1 as x], (l2[] as y | l3[P2 as y])
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BV(P) is {x,y}. We say that P is linear iff for any subphrase P’ of P the following conditions
hold:

x /∈ BV (P1) if P ′ = P1 as x

BV (P1) ∩BV (P2) = ∅ if P ′ = P1 , P2

BV (P1) = BV (P2) if P ′ = P1 | P2

BV (P1) = ∅ if P ′ = P1∗

All the patterns in the program are required to be linear.

3.3.2 Expressions and Values

Parameters inside printf statements are expressions. Expressions e are defined as follows:

e ::= l [e] tag with label l

| e , e sequence

| x program variable

| ( ) empty sequence

| s double quoted literal string (e.g. “hello”)

For conciseness we write l[] as an abbreviation of l[()].
Values v are expressions which contain no variables.

Values and XML documents

Our values roughly correspond to XML fragments without attributes. For example we can
rewrite the following:

<person>

<name>

<first>Fabrizio</first>

<last>Bisi</last>

</name>

<email>bisi@cs.unibo.it</email>

<email>bisif@tin.it</email>

<telephone/>

</person>

as an XRel value in the following way:
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person[

name[

first["Fabrizio"],

last["Bisi"]

],

email["bisi@cs.unibo.it"],

email["bisif@tin.it"],

telephone[]

]

Note that we need an empty sequence in values not only to be able to specify empty
documents but especially to specify empty subtrees that correspond to XML tag elements
with an empty content (<l></l> or <l/>).

The correspondence between our values and XML documents is not exact as it appears.
There are three reasons for this:

1. XRel doesn’t handle XML attributes

2. an XRel value can be a sequence of values, whereas XML documents need to have a
unique root

3. XRel values with adjacent string nodes don’t have a correspondent in XML trees built
from DOM parsers

To clarify the last point we show another example of XML code. While the example
above plainly shows the tree nature of XML documents we must not forget that in XML
it’s possible to write things like the following:

<h1>Welcome to my home page</h1>

This page describes...

<h2>Interests</h2>

My hobbies...

where flat text and tag elements are mixed together so that it’s not immediate to see a tree
structure for the document. We can see this code as a tree if we consider adjacent parts of
text as leaf nodes (so that we have actually two types of leaf nodes: empty nodes and string
nodes). This is exactly what DOM parsers usually do5.

So the piece of XML code above can be seen as the following XRel value:

5the Xerces DOM parser has exactly this behavior; however CDuce authors say that XML parsers do

not usually guarantee that text nodes represent maximal textual portions of the documents, so that they

removed the String type replacing it with Char* — see the related discussion in [BCF03]
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h1["Welcome to my home page"],

"This page describes...",

h2["Interests"],

"My hobbies..."

While it’s possible convert univocally each XML fragment without attributes into an
XRel value, it’s not clear to understand what is the correspondent XML fragment for XRel
values that have adjacent string nodes. For example the correspondent XML code for the
following value:

h1[...],"This page ","describes",h2[...],...

should be

<h1>...</h1>This page describes<h2>...</h2>...

but if we read again this XML with a DOM parser we do not get back our original value.
While we can write sequences with adjacent String nodes a DOM parser will never produce
a such tree. This means that if we try to match a value against a such pattern the match
will always fail.

Label Classes

Whether include label classes or not was a design issue for XRel. [HP03] argue that label
classes are useful for the following reasons:

1. differences and unions of labels are useful

2. in the algorithm that computes difference between automata difference between labels
is however needed whereas union between labels can be inserted for optimization
purposes (in difference algorithm I can merge L1[A] with L2[A] in (L1|L2)[A])

However we made the choice to omit them to try to retain the language design as simple
as possible.

3.3.3 Type Checking

In this section I give the definitions and the semantics for static type–checks applied to the
patterns. Note that, with the exception of the weak ambiguity check, they are the same of
XDuce (see sections 5.4 and 5.5 in [HP03]).

Definitions of exhaustiveness, irredundancy, non-ambiguity, and type inference for pattern-
match expressions are all made with respect to an “input type” T describing the set of values
that may be presented to the expression at run time.



50 CHAPTER 3. XREL

Typechecks on the typeswitch construct

Patterns inside typeswitch construct are required to be exhaustive and irredundant with
respect to the input type T. Let us give definitions for exhaustiveness and irredundancy.

Exhaustiveness A list P1 | ...| Pn of patterns is exhaustive with respect to T, iff, for
all v ∈ T implies v ∈ Pi ⇒ V for some Pi and V.

Irredundancy A list P1 | ...| Pn of patterns is irredundant with respect to T, iff, for
all Pi, there is a value v ∈ T such that v /∈ Pj for 1 ≤ j ≤ i-1 and v ∈ Pi ⇒ V for some V.

Furthermore, the type of each expression is checked to be a subtype of the declared
output type and all patterns are checked to be weakly unambiguous. We explain in the next
sections.

Expressions’ type correctness

If an XRel program includes an export clause, all the expressions e are checked to be
correctly typed, i.e. we check that Te ⊆ Tout, where e ∈ Te and Tout is the declared output
type. To evaluate Te we use type inference for variables. Let us define semantics for type
inference and subtyping.

Type inference The goal of pattern type inference is to “compute” the range of a pattern,
defined as follows. A type environment Γ describes the range of a pattern P with respect to
type T iff, for all variables x and values v, we have

v ∈ Γ(x) iff there exists a value u ∈ T such that u ∈ P ⇒ V for some V with
V(x) = v

Subtyping A type T1 is a subtype of another type T2, written T1 <: T2, iff v ∈ T1

implies v ∈ T2 for all v.

Weak unambiguity

All the patterns in a XRel program are required to be weakly unambiguous.
Hosoya uses a definition of non-ambiguity similar to strong non-ambiguity for string

regular expressions [SSS88]; differences are that XDuce treats sequences of trees rather than
strings, and that non-ambiguity is considered for a given restricted set of input values rather
than for all input values (section 5.4.6 in [HP03]).

However I’ve found a simpler algorithm that checks weak non-ambiguity instead. Notions
of weak and strong non-ambiguity for regular expressions are formally defined in [BK91] and
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in [SSS88]. [BK91] gives the following definition of weak ambiguity for automata and regular
expressions(definition 4.1, page 13):

1. an ε-NFA M is unambiguous if for each value v there is at most one path from the
initial state to the final state that recognizes v

2. a regular expression T is weakly unambiguous if and only if the NFA MT is unam-
biguous

where ε-NFAs are NFAs with ε-transitions that are built with a procedure that preserves
strong ambiguity (as that Hosoya uses).

So a regular expression T is weakly unambiguous if each value v can be traced uniquely
with a path through T, whereas T is strongly unambiguous if each value can be uniquely
decomposed into subvalues according to the syntactic structure of T [SSS88] (refer to 5.4.6
page 19 in [HP03] for an operational semantics for strong unambiguity).

To give an example, the expression (a*|b*)* is trivially weakly unambiguous because
each symbol occurs only once. Thus, any symbol in a value can be matched by exactly one
position in the expression. In contrast, the value a,a is denoted by (a*|b*)* as a single
application of the outer star and a twofold application of the inner one, or, alternatively, as
a twofold application of the outer star and two single applications of the inner one. Thus,
(a*|b*)* is not strongly unambiguous.

Bruggemann and Klein [BK91] also give a mathematical framework and discuss the
relation between the two notions of unambiguity; in this framework, they give an inductive
definition of weak unambiguity (lemma 4.7, page 14).

My intuition for why we only need weak ambiguity, and not strong ambiguity, is that
our variable binders need to be linked to the label, so it doesn’t matter whether (a*)* is
ambiguous because anyway we can’t bind a for linearity constraints; instead it’s important
that a,b | a,b is ambiguous — consider (a as x,b as y) | (a as y, b as x).

I discuss my algorithm in section 4.3.3. I talked with Hosoya by e–mail and he said that
although he doesn’t have a proof, he can believe that my algorithm checks weak-ambiguity.
Also he doesn’t know whether strong ambiguity is better than weak one or not in practice,
but he has an impression that weak one is better.

Hosoya cites in section 7 of [Hos03] an algorithm developed by Kawaguchi that detects
weak ambiguity for tree grammars [Koh]; in this paper he says that he believes that it’s
possible to obtain an algorithm for checking weak ambiguity by a slight modification of its
algorithm.
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Chapter 4

Implementation

In this chapter we analyze the algorithms of XRel. Remember that XRel has a static
(compile-time) phase and a dynamic (run-time) phase.

In its static phase it loads a program, builds a syntax tree for it, checks for syntactic
errors, adds predefined types and finally calls the semantic analyzer. The semantic ana-
lyzer checks that there are no type errors and produces in output a set of automata, each
corresponding to a pattern of the program.

The dynamic phase (if present) loads the specified XML document and converts the tree
produced by the DOM parser into an internal tree (i.e. into the internal representation of
an XRel value), then it calls the pattern matching algorithm and generates the output.

We omit to describe third–party code (the program parser generated by a JavaCC /
JJTree grammar and the DOM parser written by Apache Foundation) and accessory code
(like the syntax error checks) and we focus instead on the more interesting parts of the
program: the semantic analyzer and the run-time pattern matching algorithm.

The semantic analyzer does the followings:

1. it checks that types are well formed

2. it checks that patterns are linear

3. it converts the types and the patterns of the language to an internal normalized format

4. it builds automata

5. finally it performs the other type error checks, i.e. the ambiguity check on the import

pattern and the checks on the typeswitch statement (exhaustivity of the clauses,
unambiguity and irredundancy of each clause, adherence of the expressions to the
declared output type).

53
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4.1 Symbol Table

The code that builds the syntax tree also fills the symbol table with all the information it
collects from the input source code. This data structure will be continuously updated in
each phase of the static part of the program and then used in its dynamic part.

When the parser finishes its run, the symbol table contains four kinds of information:
the list of all the types declared in the program (comprehensive of the output type), a list
of all the patterns (the import pattern and the clauses inside the typeswitch construct), a
list of all the variable names together with the declared type and theirs scope, and a list of
all the expressions inside printf statements along with theirs scope.

These four lists are implemented with Vectors of SymElement (symbol table elements)
objects. SymElement is a general purpose class that can storage information for a type, a
pattern, a variable or a program expression. For example it has the field name to store the
name for variables and types1 and an integer field scope to record scoping information for
variables and expressions (the scope is 0 for variables declared inside the import statement,
the number of the clause starting from 1 for variables and expressions inside the typeswitch
statement). SymElement objects of whichever kind use the field node to refer to the root of
the subtree in the abstract syntax tree that represents the related expression (type expres-
sions for types and variables, pattern expressions for patterns, the expressions themselves
for program expressions). The class also has an integer field idCode that uniquely identifies
objects inside their category; as we’ll see below, this number is used to build the internal
names for patterns and expressions.

For this document, let us formalize these four vectors with the following mappings
E,F ,G,H

E : X → T types

F : Y → P patterns

G : V → T declared variable types

H : W → e expressions

where X ranges over type names, T ranges over type expressions, Y ranges over (internal)
pattern names, P ranges over pattern expressions, V ranges over variable names, W ranges
over internal expression names and e ranges over program expressions.

Internal pattern names are generated by concatenating an underscore with the idCode

(e.g. 0 is always the import pattern), while expressions are generated by concatenating
two underscores with the idCode ( 0, 1, . . . ). In the real code, internal names are also
generated to identify variables, as a variable name is unique only inside its scope while
the idCode identifies univocally the variable in each point of the program. For the sake of

1Actually this field is used also for patterns and expressions to store the internal generated name, as

explained below



4.1. SYMBOL TABLE 55

clarity, in this chapter we’ll use the source code names to identify variables assuming that
there are no conflicts.

Consider the following input example:

typedef T1 = name1[String],name2[String];

typedef T2 = name[String]+;

import root[ (T1 | T2) as x ];

typeswitch(x)

{

// this clause matches values of type T1

case name1[String as n1],name2[String as n2]:

{ printf(first[n1]); printf(last[n2]); }

// this clause matches values of type T2

// when there are at least two names

case name[String as fst],name[String]*,name[String as lst]:

printf(first[fst], last[lst]);

// one only name case

case name[String as nm]:

printf(first[nm], last[nm]);

}

the parser generates the following symbol table

E(T1) = name1[String],name2[String]

E(T2) = name[String]+

F(_0) = root[ (T1 | T2) as x ]

F(_1) = name1[String as n1],name2[String as n2]

F(_2) = name[String as fst],name[String]*,name[String as lst]

F(_3) = name[String as nm]

G(x) = (T1 | T2)

G(n1) = String

G(n2) = String

G(fst) = String

G(lst) = String

G(nm) = String

H(__0) = first[n1]

H(__1) = last[n2]

H(__2) = first[fst],first[lst]

H(__3) = first[nm],last[nm]
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Expressions to the right–side of the equations are actually trees whose nodes can belong
to one of the following classes: ASTComma, ASTPar (|), ASTIdentifier (variables and
type names), ASTEmpty (empty sequence), ASTAs (binders), ASTOperator, ASTString,
ASTStringLiteral ("...") and ASTTag. All these classes implement the interface Node that
has the usual fields for tree nodes: the field parent points to the parent node, children is
an array with pointers to children, etc. More, some classes add specific fields: ASTIdentifier
and ASTTag have a name field (the latter one uses it to store labels), ASTAs has a varName

field to store the name of the variable to bind, ASTOperator has an operator field which
can assume only the values “*”, “+” or “?”, ASTStringLiteral has a value field, and so on.

As an example of tree, recall that T1 is name1[String],name2[String]. Hence E(T1)

is a tree with a ASTComma root that has 2 children, both of type ASTTag; the tags have
one child, each of type ASTString.

4.1.1 Well–Formedness Check

Remember that we require that every type is not recursive at the top level. In section 3.3.1
we defined “reachability at the top–level” and we asserted that a type is well–formed if it’s
not reachable at top–level by its expansion.

To check that a given type with name X is not reachable at the top-level from inside a
type expression T we define a “disconnectedness” judgment of the form “σ ` T : dc(X)”,
where σ is a set of variables. It should be read “T is disconnected from X (i.e. X does not
occur in the top level of T), assuming that all bodies of variables in σ are disconnected from
X”. This judgment is defined by the following rules (where X 6= X1)2:

σ ` T : dc(X) for T = () or l[T ′] or base type

σ ` X1 : dc(X) if X1 ∈ σ

σ ` X1 : dc(X) if X1 /∈ σ and σ ∪ {X} ` E(X1) : dc(X)

σ ` T1 | T2 : dc(X) if σ ` T1 : dc(X) and σ ` T2 : dc(X)

σ ` T1, T2 : dc(X) if σ ` T1 : dc(X) and σ ` T2 : dc(X)

σ ` T? : dc(X) if σ ` T : dc(X) where ? ∈ {∗, ?, +}

We now explain this definition. The empty sequence, a label or a base type (String or a
string literal) are disconnected from X. When there is a concatenation we check that all
concatenated subtypes are disconnected from X; analogously for choice. Note that rules
for concatenation and choice are defined in a binary mode for conciseness: in XRel the
concatenation and choice nodes have an arbitrary number of children. T∗, T? and T+ are
disconnected from X when T is disconnected from X.

2This formalization is given by Hosoya and the other XDuce authors in [HVP00] to describe a subroutine

of the old right–linearity check. This old subroutine applied to the types of the program is all we need to

check the non-reachability at top–level
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To ensure termination, we keep track in σ of variables that have already been found
to be disconnected. For any type name X1 6= X we encounter, if X1 ∈ σ we immediately
return true, otherwise we recursively check E(X1). If we encounter X none of the rules
above applies, so that we can assert that X is not disconnected from itself.

Now the set of type definitions E is said to be well–formed if each type X is disconnected
from its body expansion E(X), i.e. if

∅ ` E(X) : dc(X) ∀X ∈ dom(E)

A function in Java pseudo–code for the judgment above is the following:

boolean dc(Symtab symtab, HashSet sigma, Node T, String X) {

switch (T) {

case T1| ..| Tn:

case T1, .., Tn:

// T is disconnected from X iff T1,..,Tn are disconnected from X

return dc(symtab,sigma,T1,X) && .. && dc(symtab,sigma,Tn,X);

case T’*,T’+,T’?:

return dc(symtab,sigma,T’,X);

case (),l[T’],literal,String:

return true; // base case 1 (success)

case X1: // type name

if (X1 == X)

return false; // base case 2 (fails!)

else if (X1 is in sigma)

// X1 has already been found disconnected

return true;

else

return dc(symtab,sigma + {X1},symtab.E(X1),X);

}

}

It takes four arguments:

1. the symbol table symtab to access to the list E of type names in the program (used
for the case X1 6= X)

2. the set of variables sigma (σ) already checked (HashSet is the Java built-in class for
sets)

3. the root T of the (sub)type expression to recursively check

4. the type name X to check
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and returns true if X is disconnected from T (false otherwise).
The function is invoked by the semantic analyzer on each type X of the program with

the following call:

dc(symtab,∅,E(X),X);

4.1.2 Linear Patterns

Recall from discussion in 3.3.1 that we require all the patterns in the program to be linear,
and that a pattern P is defined to be linear if for every subphrase P’ the following conditions
hold:

x /∈ BV (P1) if P ′ = P1 as x

BV (P1) ∩BV (P2) = ∅ if P ′ = P1 , P2

BV (P1) = BV (P2) if P ′ = P1 | P2

BV (P1) = ∅ if P ′ = P1∗

These rules show us how to build a recursive function bv that takes in input a pattern
expression and returns the set of bound variables inside it.

HashSet bv(Node P) throws LinBrokenException {
switch (P) {

case (),literal,String,Y:

return ?; // base case

case l[P’]:

return bv(P’); // recurse on P’

case P1,...,Pn:

// P is linear if P1,...,Pn are linear and

// bv1=bv(P1),...,bvn=bv(Pn) are disjoint

// S1 ] S2 throws a LinBrokenException if

// S1 ∩ S2 6= ? (if sets are not disjoint)

return bv(P1) ] ... ] bv(Pn);

case P1|...|Pn:

// P is linear if P1,...,Pn are linear and

// bv1=bv(P1),...,bvn=bv(Pn) are equal

HashSet bv1=bv(P1); ...; HashSet bvn=bv(Pn);

if (!(bv1==...==bvn)) throw new LinBrokenException();

return bv1;

case P’*,P’+,P’?:

if (bv(P’) 6= ?) throw new LinBrokenException();

return ?;



4.1. SYMBOL TABLE 59

case P’ as x:

return bv(P’) ] {x};
}

}

Note that we used a subroutine ] (called unionDisjoint in the implementation) that
merges two sets while checking that they are disjoint (it throws a LinBrokenException if
they are not).

We can use the function bv above to build a predicate isLinear(P ) that says if a pattern
is linear in the following way

boolean isLinear(Node P) {

try {

bv(P);

}

catch (LinBrokenException e) {

return false;

}

return true;

}

4.1.3 Translation to Internal Patterns

We obtain internal patterns from the types and the patterns of the surface language by
removing the syntactic sugar from all the types and patterns in the symbol table, then
following Hosoya [Hos03] we reduce the resulting patterns to a simplified normal form used
for the conversion to automata. Henceforth we talk of patterns referring both to the types
and to the patterns of the program (remember that the type expressions are a subset of the
pattern expressions).

Removing syntactic sugar from a pattern expression means to perform the following
simple transformations to it:

- convert String into the pseudo-tag #String[] and convert every string literal “literal”
into the pseudo-tag #"literal"[] (these names are guaranteed never to clash with
other labels).

- remove the operators “+” and “?” with the following substitutions:

– P+ = P,P*

– P? = P|()
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This desugaring is straightforward — indeed the normalization function ts below can
easily be modified to do also the desugaring work — so I omit it for conciseness3. “Desug-
ared” patterns as used in XRel source code were defined previously in section 3.3.1 as

P ::= X
�� P as x

�� `[P ]
�� ∼[P ]

�� ()
�� P, P

�� P |P
�� P∗

The simplified “normal form” has the following syntax

Q ::= Q as x
�� `[Y ]

�� ∼[Y ]
�� ()

�� Q, Q
�� Q|Q

�� Q∗

where Y ranges both over pattern names and type names. Note that direct nesting of labels
is forbidden and that pattern names are required to occur only inside labels.

Hosoya describes the arbitrary patterns in [HP03] but only defines translation from the
normal forms to automata [Hos03]: he never describes formally translation from arbitrary
patterns to the normal form above4. Below we describe our conversion algorithm, whose
work is to

1. eliminate top-level type names by replacing them with their related expressions (e.g.
l[ ],X where E(X) = m[ ] becomes l[ ],m[ ])

2. convert into a reference every pattern expression inside a tag (e.g. l[m[ ],n[ ]] be-
comes m[Y] with F(Y) = m[ ],n[ ])

Note that transformations at point 2 can create many new patterns so we need to be
careful that the algorithm terminates. In the next section we discuss this problem.

Algorithm

We give the pseudo–code for the algorithm for conversion to normal form. The main code
calls a function ts for all type expression E(X) and for all pattern expression F(Y) in the
source. The function ts takes in input the symbol table and a tree that represents the
pattern, and returns the normalized tree; during its execution, it can possibly add new
patterns to the vector F in the symbol table .

Node ts(SymTab symtab, Node P) {

switch (P) {

case P1| ..| Pn:

// Recursion on subexpressions

return ts(P1) |...| ts(Pn);

3In the implementation I’ve separated the desugaring phase from the normalization phase for debug

purposes
4In its thesis [Hos01] and in papers [HP02, HVP00] he gives a translation from external to internal

patterns, but the algorithm described in these old works is out by date, as the old internal patterns are very

different by the current ones
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case P1, .., Pn:

// Recursion on subexpressions

return ts(P1), ..., ts(Pn);

case ():

return (); // nothing to do

case P’ as x:

return ts(P’) as x; // recursion on P’

case P’*:

return ts(P’)*; // recursion on P’

case l[P’]:

if (P’ is a type name) {

return l[P’]; // it’s already normal

}

else {

// create new pattern Y’ in symtab.F

symtab.F.append(Y’ -> P’);

// replace P’ with Y’ inside l

return l[Y’];

}

case X: // P is a type name

return ts( symtab.E(X) ); // recursion on type expansion

}

}

Note that both subtypes in E and proper subpatterns in F are added to the vector F
as new patterns. For example a type E(X) = a[b[]] is normalized as

E(X) = a[_1]

F(_1) = b[]

Note also that new generated patterns are not immediately normalized by ts. For in-
stance, a type E(X) = a[b[],Y,...] is normalized by the function above as

E(X) = a[_1]

F(_1) = b[],Y,...

However, because they’re appended at the tail of the list of patterns of the program
(symtab.F in the code), they’re normalized afterwards when they’re reached by the while

loop that calls ts on each element of the list.
For proof of termination, ts always terminates: each case decreases the size of its input,

except for the final case; but it is only called finitely many times due to disconnectedness
(Section 4.1.1). As for the while loop in the main code that call ts, key to its termination
is the fact that children Y ′ → P ′ are appended to the list symtab.F. We illustrate with two
examples.

Consider this first example:
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typedef A = a[b,A,c] | ();

When ts is applied on the body expression of A, it creates a new pattern for the content of
the tag labelled a, giving:

E(A) = a[_1] | ()

F(_1) = b,A,c

Afterwards, the main code proceeds by applying the ts function to the next pattern,
that is 1; ts replaces A with its expression obtaining:

E(A) = a[_1] | ()

F(_1) = b, (a[_1]|()), c

Supposing there are no other patterns, the procedure terminates because all patterns in
the program (A and 1) are normalized.

To see why we need to normalize the freshly created subpatterns after the original
patterns, let us show a more complex example:

typedef X = l[b,Y,c];

typedef Y = m[d,Y,e] | ();

Suppose that ts(E(X)) is invoked first. The content of the tag labelled l is put in a new
subpattern 1

E(X) = l[_1]

E(Y) = m[d,Y,e] | ()

F(_1) = b,Y,c

after which ts(E(Y)) (and not ts(F( 1))) is called. The normalization of Y leads to the
following:

E(X) = l[_1]

E(Y) = m[_2] | ()

F(_1) = b,Y,c

F(_2) = d,Y,e

Note that it’s not important the order with which ts(F( 1)) and ts(F( 2)) are applied;
we always arrive at the following situation:

E(X) = l[_1]

E(Y) = m[_2] | ()

F(_1) = b, (m[_2]|()), c

F(_2) = d, (m[_2]|()), e

that is final, because all patterns in the program are normalized.
If we don’t process the new patterns after the original ones we could have infinite loops.

For instance in the situation above
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E(X) = l[_1]

E(Y) = m[d,Y,e] | ()

F(_1) = b,Y,c

if ts(F( 1)) is applied before ts(E(X)), we have

E(X) = l[_1]

E(Y) = m[d,Y,e] | ()

F(_1) = b,m[d,m[d,m[d,...

where the algorithm gets stuck on the infinite loop because Y is infinitely replaced with its
expression.

4.2 Tree Automata

My automata are almost identical to those Hosoya defines in [Hos03]. The only differences
are

- I’ve limited label classes to only basic cases (for automata derived from patterns there
are only single labels ` and the any label ˜)

- I chose to represent tag contents with subautomata, applying to automata an idea
that author gives in his newest papers for grammars [HM02a, HM02b]5

The aim of the normalization given in the previous section was to prepare patterns for
translation into automata. For conciseness in formalization we suppose from now to have
copied all the types in E into F. Recall that an internal pattern is a regular expression
whose atoms are of the form (), `[Y] or ~[Y] (below I refer to () with ε and to the two last
cases collectively as L[Y]), where Y is a pattern name or a type name. From each internal
pattern, we can construct an automaton whose transition labels are also of the form ε or
L[Y].

Formally, a tree automaton A is a tuple (Q, Qinit, Qfin, δ) where

- Q is a finite set of states

- Qinit ⊆ Q is a set of initial states

- Qfin ⊆ Q is a set of final states

- δ is a set of transition rules of the form q
S: L[X]−−−−−→ q or q ε−→ q

5This seems merely to be difference in formalization — looking at the code of XDuce 0.4.0 it seems that

Hosoya also uses subautomata to represent subtrees
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We also write these components as st(A), init(A), fin(A) and tr(A), respectively. These
automata are different from usual ones [CDG+97] in that each transition is associated with
a set of variables S. We omit “S:” from a transition rule when S does not matter.

The set of variables S associated to a labelled transition represent the variables to “up-
date” when the transition is followed during pattern matching. For each variable there is
a “sequence accumulator” that collects the elements that match with that variable in the

input value; while the automaton runs, if a transition q1
{x}: `[Y ]−−−−−−→ q2 is followed, the element

`[Y ] is added to the accumulator of the variable x6. When the execution stops because
it has successfully found a path that matches the input value, all sequence accumulators
contain the values to bind with their respective variables.

To each transition is associated a set of variables (rather than a single variable) since
variable binders can be nested. For example the automaton in fig. 4.1 represents the pattern
(a[], (b[]* as y)) as x.

Figure 4.1: Automaton for “(a[], (b[]* as y)) as x” (Y() is a pattern that matches with the empty

sequence)

4.2.1 Building Automata

Following Hosoya [Hos03] we use the standard Thompson’s algorithm adapted to build tree
automata with sequence accumulators.

Given a pattern P we create an automaton AP = AP,∅, where AP,S = (QP,S , Qinit
P,S , Qfin

P,S , δP,S)
is defined inductively on the structure of P:

A(),S = ({q1}, {q1}, {q1}, ∅)

AL[Y ],S = ({q1, q2}, {q1}, {q2}, {q1
S: L[Y ]−−−−−→ q2})

A(P1,P2),S = (QP1,S ∪QP2,S , Qinit
P1,S , Qfin

P2,S , δP1,S ∪ δP2,S ∪ (Qfin
P1,S

ε−→ Qinit
P2,S))

A(P1|P2),S = (QP1,S ∪QP2,S , Qinit
P1,S ∪Qinit

P2,S , Qfin
P1,S ∪Qfin

P2,S , δP1,S ∪ δP2,S)

AP∗,S = (QP,S ] {q1, q2}, {q1}, {q2},
δP,S ∪ ((Qfin

P,S ∪ {q1}) ε−→ (Qinit
P,S ∪ {q2})))

A(P as x),S = AP,S∪{x}

6Following Hosoya we chose to implement a simpler algorithm in two phases, see 4.2.2
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The notation Q1
l−→ Q2 means {q1

l−→ q2 | q1 ∈ Q1, q2 ∈ Q2} (l is either “S : L[Y ]” or ε).
In this phase the semantic analyzer invokes the function buildTA on all the types and the

patterns of the program; this implements the algorithm above, adding to the symbol table
a new mapping M : Y → A from pattern names to the built automata. I omit pseudo–code
for this function because it’s long and not very interesting (it recursively builds and merges
subautomata by following the rules described in the formalization above).

Again, note that there are two differences with the algorithm that Hosoya describes in
appendix A of [Hos03]:

- my label classes L lack complex cases (L1|L2 and L1\L2)

- the automata formalization in [Hos03] creates a big automaton Aall
P0,∅ that includes also

the subautomata corresponding to the subpatterns inside the tags of P0. Here I only
build the main automaton corresponding to the top-level of the given pattern P0 and
then I write inside labelled transitions pattern names instead of states as Hosoya does
— the appropriate subautomaton can be correctly localized during pattern matching
with the M mapping explained above

To complete the building of an automaton we use two further steps:

1. the removal of ε-transitions

2. the removal of useless states, i.e. states that are not reachable from the initial states
and that are not matched by any value

Removal of ε-Transitions

Differently by Hosoya, I always remove ε-transitions from the automata; he has instead
to retain them in the ambiguity check algorithm, because ε-transition operation doesn’t
preserve strong ambiguity (see section 4.3.3).

I’ve used the same algorithm as Hosoya, that is actually the standard algorithm used
also for string automata (see [HU97]).

Following Hosoya7 we first define the function ε−clos to compute the set of states reach-
able by ε-transitions from a given state:

ε−closA(q1) = {q2 | q1
ε−→∗

q2 ∈ tr(A)}

(q1
ε−→∗

qn ∈ tr(A) means qi
ε−→ qi+1 ∈ tr(A) ∀i = 1, . . . , n− 1, n ≥ 1). Then we define

7material here is replicated in section 4.3 of [Hos03]
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B = ε−elim(A) as follows.

st(B) = st(A)

init(B) = init(A)

fin(B) = {q1 ∈ st(A) | ε−closA(q1) ∩ fin(A) 6= ∅}

tr(B) =

�
q1

S: l[Y ]−−−−→ q2

???? q3 ∈ ε−closA(q1), q3
S: l[Y ]−−−−→ q2 ∈ tr(A)

�
In practice to eliminate the ε-transitions from an automaton we have to

1. add each state that has a final state in its epsilon closure to the set of final states

2. add to each state the exiting transitions that exit from all the states in its epsilon
closure

3. lastly remove ε-transitions from the automaton

For instance given the automaton in fig. 4.2 representing the pattern “a[],b[]*”,
ε−elim transforms it in the automaton in fig. 4.3.

Figure 4.2: Automaton for a[],b[]* with ε-transitions

Figure 4.3: Automaton for a[],b[]* without ε-transitions

Remove Useless States

This operation removes, from a given automaton, all the states that are not reachable from
the initial states and those that are not matched by any value. Following Hosoya8, we define

8This definition is taken by Section 4.2 in [Hos03]
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reachA(q) as the set of states reachable from q and B = ∅−elim(A) as follows.

st(B) = {q | q ∈ reachA(init(A)), ∃v. A ` v ∈ q}
init(B) = init(A) ∩ st(B)

fin(B) = fin(A) ∩ st(B)

tr(B) =

�
q1

S:l[Y ]−−−−→ q2 | q1, q2 ∈ st(B)

�
where A ` v ∈ q is the pattern matching relation we’ll see in section 4.2.2 (intuitively it
means that there exists a path starting from q in A that recognizes v).

The definition above gives no operative algorithm; however we can use the well–known
algorithms on string automata. Actually, there are two distinct algorithms in [HU97]: the
former removes unreachable states (states that could possibly match a value but that can’t
be reached from the initial states), the latter removes “unmatchable” states (states for which
there doesn’t exist any starting path that will recognize a value, in practice states for which
there doesn’t exist a path that arrives in a final state).

To remove unreachable states we use the following:

1. assign the initial states to the set of reachable states

2. add to the set of reachable states all the states reachable in a step that are not yet in
the set

3. repeat step 2 until there are no more states to add to the set

4. discard the remaining states and update the set of final states; discard transitions
from/to deleted states states

To remove “unmatchable” states we use the following:

1. assign the final states to the set of matchable states

2. add to the set of matchable states all the states that go in a matchable state in a step
and that are not yet in the set

3. repeat step 2 until there are no more states to add to the set

4. discard the remaining states and update the set of initial states; discard transitions
from/to deleted states

Both these algorithms work on automata without ε-transitions. Note that they are
similar: while the former proceeds forward from initial states searching for final states,
the latter proceeds backward from final states searching for initial states: both algorithms
terminate when a “fixed point” is reached, i.e when it’s not possible to add further new
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states to the set of processed states. Finally both algorithms delete unprocessed states and
transitions that begin from / end to a deleted state.

After removing useless states the automaton in fig. 4.3 becomes as that in fig. 4.4. Note

Figure 4.4: Automaton for a[],b[]* without ε-transitions and without useless states

that this is the same automaton we’ve seen in figure 4.1, but without bindings.

N.B.: Hosoya claims in section 4.2 of [Hos03] that there is a well known linear-time
algorithm for useless states elimination and cites [CDG+97]. I’ve looked at [CDG+97] but
I’ve found a polynomial algorithm (RED at page 23) equivalent to that I’m using here. I
don’t know what Hosoya refers to (algorithms proposed below are polynomial as well).

4.2.2 Pattern Matching

Let me describe a formalization of the behavior of tree automata with sequence accumulators
informally described above (this formalization is taken and adapted from that given in
Section 4.1 of [Hos03]). Rather than directly dealing with sequence accumulation, we take
two steps for ease of reasoning. First, an automaton annotates each node of the input value
with a set of variables while matching the value. Then we extract a value for each variable
by erasing the nodes whose annotated sets do not contain that variable.

Annotated values ρ are values where each label is annotated with a set of variables S
and defined by the following syntax:

ρ ::= a[ρ]S annotated label

| ρ, ρ concatenation

| ε empty sequence

We omit S from an annotated label in contexts where it does not matter. Now, the semantics
is described by the matching relation “A ` v ∈ q ⇒ ρ”, meaning “in automaton A the
value v is accepted by state q and yields an annotated value ρ”, by the following set of
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rules.

q ∈ fin(A)

A ` ε ∈ q ⇒ ε
(T-Fin)

q1
S: L[Y ]−−−−−→ q2 ∈ tr(A) ` ∈ L M(Y ) ` v1 ⇒ ρ1 A ` v2 ∈ q2 ⇒ ρ2

A ` `[v1], v2 ∈ q1 ⇒ `[ρ1]X , ρ2
(T-Lab)

We write A ` v ∈ ρ when A ` v ∈ q0 ⇒ ρ with q0 ∈ init(A) and write A ` v when
A ` v ⇒ ρ for some ρ.

Observe the differences between my and Hosoya’s formalization:

- I’ve removed the T-Eps rule because I never need to match values against automata
with epsilon transitions

- the handling of the subtrees in the T-Lab rule is different: while Hosoya can simply
move to the initial state of the subautomaton that recognizes the subtree, I need to
search my separate subautomaton through the M mapping and explicitly “run” it
(however I guess this is only a difference in formalization and that Hosoya’s algorithm
is similar to mine).

Again, recall that our label classes L have only the cases ` and ˜, so that ` ∈ L means either
L = ` or L = ˜.

As a second step, we define the function env9 that takes in input an annotated value
and a variable x and returns the bound value for x.

env(ε)(x) = ε

env(a[ρ1]
S , ρ2)(x) = a[erase(ρ1)], env(ρ2)(x) if x ∈ S

env(a[ρ1]
S , ρ2)(x) = env(ρ1)(x) if x /∈ S, env(ρ1)(x) 6= ε

env(a[ρ1]
S , ρ2)(x) = env(ρ2)(x) if x /∈ S, env(ρ1)(x) = ε

where erase removes all the variable-set annotations from a given annotated value:

erase(l[ρ]S) = l[erase(ρ)]

erase(ρ1, ρ2) = erase(ρ1), erase(ρ2)

erase(ε) = ε

To understand how the function env works, consider what it happens when it visits a
node in the input value. There are three cases. If x is in the node’s variable set, it retains
the node (by erasing all the annotations in its content ρ1) and continues to process the
rest of the sequence. Otherwise, if x is not in the variable set, the function searches for x

9defined at page 12 of [Hos03]; I fixed a misspelling error, here — in second row original paper had

a[erase(ρ1)], ρ2(x) instead of a[erase(ρ1)], env(ρ2)(x)
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inside the subtree ρ1, recursively calling itself. If the result of this recursive call is not the
empty sequence, that is if it finds x inside ρ1, it returns the value and discard the rest of
the sequence; the reason of this behavior is that annotations for a variable will always stay
in subsequent nodes and never at different depths. Conversely, if it can’t find x inside the
subtree, it continues to search it in the rest ρ2 of the sequence.

To understand why annotations for a variable are always in subsequent nodes recall that
automata are generated from linear patterns. For example an automaton generated from
the pattern “(a[b[]],c[]) as x” will annotate the value a[b[]],c[] in the following way:

a[ b[]∅ ]{x}, c[]{x}

The only way to have a variable to be annotated on different depths, for instance as in
a[ b[]{x} ]∅, c[]{x}, would be to match the value against an automaton generated from
a pattern like “a[b[] as x],c[] as x”. However this pattern is not linear10.

Algorithm

Now I give an algorithm for pattern matching that is directly inspired by the semantics above
(annotate/extract). I’ve found that not only the formalization but also the implementation
is simpler taking the two steps described above11.

Pattern matching is performed by two methods of the class TA (Tree Automaton),
matchTree and its subroutine matchSequence. The fields of this class store the structure
of the automaton, so we have the four Vector fields states, initialStates, finalStates
for states and transitions for labelled transitions (there is also a fifth vector for epsilon
transitions but we don’t care about it here); states are represented by objects of the class
TAState while labelled transitions are represented by objects of the class TATransition

(recall that we won’t match against automata with ε-transitions). As in the formal defini-
tion, states referenced inside initialStates and finalStates vectors are also referenced
inside the states vector (i.e. the set of the initial states and the set of the final states are
both subsets of the states’ set of the automaton). The class TATransition has the following
fields (in the code below we use most of them):

String label: the label (it could be also “˜”)

TAState src: the starting state

TAState dst: the arriving state

String content: the name of the pattern representing the subtree

HashSet variables: the set of variables S
10this discussion gives only an intuitive understanding, but see [Hos03] for a more formal discussion
11Although it’s possible to implement an algorithm that directly treats with variable sequence accumula-

tors and that is equivalent to that I give here (maybe ever a little faster), I had many technical difficulties

when I attempted to implement it, so I’m returned to the algorithm suggested by the Hosoya’s formalization
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matchTree handles only the top level of the execution of the automaton: the big part
of the work is done by the subroutine matchSequence. matchTree calls it on each initial
state of the automaton, passing the first tag of the value or null if the current value is the
empty sequence. matchSequence processes the whole sequence in the value, calling itself
recursively.

Here’s the main code.

boolean matchTree(Node v) {

for each state q in initialStates {

if (matchSequence(firstTag(v),q) == true)

return true; // match!

}

return false; // it doesn’t match

}

// Recursively checks the rest of the sequence in v

boolean matchSequence(Node v, TAState q) {

if (v == null) {

// base case: the sequence is empty or terminated,

// return true if we are in a final state

return q.isFinal;

}

else {

for each transition t exiting from the state q

such that v.label matches with t.label {

// A = subautomaton for the pattern specified in t

TA A = symtab.M(t.content);

// call matchTree with the first tag of the sequence

if ((A.matchTree(v.jjtGetChild(0)) == true) &&

(matchSequence(nextTag(v),t.dst) == true)) {

// success! annotate current node

v.annotateValue(t.variables);

return true;

}

else {

// failure, we backtrack!

// (delete the annotations in the subtree)

v.eraseSubtreeAnnotations();

}

}

return false;

}

}
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In the code above we used the following:

boolean q.isFinal is a flag that says if q is a final state

Node firstTag(v) is a method of the class TA that returns the

first tag in v or null

Node nextTag(v) is a method of the class TA that returns the

next tag in v or null

String v.label the label name in a tag node

Node v.jjtGetChild(i) this method of the Node interface returns

the ith child of the node

v.annotateValue(vars) annotates v with vars set

v.eraseSubtreeAnnotations() deletes annotations from the subtree

(used for backtracking)

Notice the similarities between the T-Fin/T-Lab rules of section 4.2.2 and the code of
matchSequence function12: the external if-then-else construct choose which of the two
rules apply, while the code corresponding to the T-Lab rule checks if there exists a transition

t = q
S: L[Y ]−−−−→ qdst such that:

- it starts from current state q

- its label class L (t.label) matches with the label of the value ` (v.label)

- its subpattern Y (t.content) recognizes the subtree v1 ( M(Y ) ` v1 ∈ ρ1 is the same
as A.matchTree(v.jjtGetChild(0)) with A = M(t.content) )

- it arrives in a state qdst (t.dst) that recognizes the rest of the sequence v2 in the value
( A ` v2 ∈ qdst ⇒ ρ2 is the same as
matchSequence(nextTag(v),t.dst) )

The implementation of the env function is straightforward. I’ve written a method
bindAll shared by all Node classes13 that recursively calls itself on its subtree. Before
recursing, it reads the annotations on the node on which is invoked (annotations are inside
a Vars field) and updates the sequence accumulators corresponding to the variables which
are in the Vars set.

public void bindAll() {

for each x in Vars {

// retrieves the accumulator for the variable x

12careful readers could have noticed that in section 4.1 I’ve said that tag nodes have a name field for

labels whereas in the code above I’ve used a field label for it — actually v.label is pseudo–code for

“(ASTTag)v.name”
13In real code all Node classes inherit from a SimpleNode class that implements the Node interface
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Node xAcc = getAccumulator(x);

// append this node in tail to the sequence accumulator

xAcc = value , this;

}

// recur on children

for (int i = 0; i < children.length; i++) {

children[i].bindAll();

}

}

getAccumulator(x) above is a pseudo–code that retrieves the sequence accumulator
corresponding to the variable x (in the real code the sequence accumulator is a field of the
SymElement object representing x and is easily accessible because annotations on the nodes
of the input value are actually lists of SymElement references instead of sets of variable
names).

Note that, differently from env, bindAll updates all the variables at the same time so
it doesn’t need to take a variable as argument (and obviously it doesn’t need an annotated
value in input because it’s invoked as method of an annotated value). Ultimately, given a
tree value t and a pattern represented by an automaton A, the pattern matcher runs a code
similar to the following

if A.matchTree(t) {

t.bindAll();

...

} else { ... }

4.3 Static Typechecks

Suppose the following XRel source code:

...

import P0; // import pattern

export Tout; // output type

typeswitch(x) {
case P1: ...

...

case Pn: ...

}

where P0 is the import pattern, Tout is the declared output type, x ∈ bv(P0) is the vari-
able used for pattern matching, P1, ..., Pn are the patterns inside the clauses of the
typeswitch construct (n ≥ 0). Further, suppose that x ∈ T.
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As we’ve seen in the previous chapter, several static typechecks are applied to the source
code. Below we write tyof(P ) for the type obtained by erasing all variable binders from P.

Exhaustivity check: patterns in typeswitch construct must be exhaustive with respect
to the input type. Formally we require
T ⊆ tyof(P1) | . . . | tyof(Pn)

Irredundancy check: for all pattern Pi in typeswitch construct, check that Pi is not
redundant with respect to the input type and the previous patterns. Formally
(tyof(Pi) ∩ T\(tyof(P1) | . . . | tyof(Pi−1)) 6= ∅)

Ambiguity check: all patterns in the program (P0,. . . , Pn) must be weakly unambiguous.
A pattern P described by an automaton MP is defined to be weakly unambiguous if
and only if for each value v there is at most one path from the initial state to a final
state in MP that recognizes v (definition 4.1 in [BK91])

Output type check: If an XRel program includes an export clause, all the expressions
e are checked to be correctly typed, i.e. we check that Te ⊆ Tout, where Te is the
inferred type for e and Tout is the declared output type.

For all checks above I’ve used the following algorithms.

Union of regular expressions T1∪T2 (or equivalently T1|T2) uses merging of automata.
As we’ve seen in section 4.2, merging of automata is a basic operation in Thompson’s
construction algorithm, so we have only to use a subroutine of that algorithm (note that
union is used both for exhaustivity and irredundancy checks).

Intersection between regular expressions T1 ∩ T2 uses product between automata.
From classical theory [HU97, CDG+97], we know that L(T1 ∩ T2) = L(MT1 ×MT2), where
MT is the automaton generated by the regular expression T , L(T ) is the language denoted
by T , and L(M) is the language recognized by the automaton M . Note that intersection
is used by the irredundancy check (and we’ll see below that also type inference and the
ambiguity check use product).

Subtyping To check T1 <: T2 (or equivalently T1 ⊆ T2), there is a well-known algorithm
in string automata theory. First, remember from set theory that

T1 ⊆ T2 ⇔ T1\T2 = ∅ ⇔ T1 ∩ T 2 = ∅

The classical algorithm [HU97] uses automata and splits the problem into three steps:
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1. compute T 2 (complement MT2)

2. compute T1 ∩ T 2 (compute MT1 ×MT2)

3. check non-emptiness of the result

Unfortunately we can’t use this algorithm in a naive way, as we have problems at point
1. Although the complementation of an automaton is easy by itself (it merely consists of
the inversion between final and non-final states), it can only be applied to deterministic
automata. To apply it also to non-deterministic automata like that built by the Thomp-
son’s algorithm, a “determinization” algorithm must be used to translate the NFA into a
DFA. However, top–down non-deterministic tree automata and top–down deterministic tree
automata are not equally expressive, as their counterparts on string automata, so we can’t
use classical determinization algorithm based upon subset construction.

Our solution is to give a difference algorithm and then a non emptiness test on automata.
The difference algorithm includes an unusual subset construction different by the usual sub-
set construction used in standard string automata theory; it also uses a label normalization
algorithm that handles matching between labels and wildcard labels (see section 4.3.4).

Evaluation of the expressions To compute the type Te of an expression we have only
to replace in the tree representing the expression the variable names with their inferred
types. So the non trivial part of the algorithm is the type inference for variables. We’ll
talk about it in section 4.3.2.

Finally, note that T = tyof(P ) is really not a function but a formalism (when we use
the automaton MP generated from the pattern P we only have to ignore variable sets on
labelled transitions).

4.3.1 Product Automata

Given two automata A and B representing patterns, we define the product A × B as follows

st(A×B) = st(A)× st(B)

init(A×B) = init(A)× init(B)

fin(A×B) = fin(A)× fin(B)

tr(A×B) =

8>><>>:〈p1, q1〉 S: (L1∩L2)[〈Y1,Y2〉]−−−−−−−−−−−−−−−→ 〈p2, q2〉

????????
L1 ∩ L2 6= ∅
p1

L1[Y1]−−−−→ p2 ∈ tr(A)

q1
S: L2[Y2]−−−−−−→ q2 ∈ tr(B)

9>>=>>;
Note that this product definition “discards” the variable sets on the transitions of the

automaton A, retaining the binding behavior of the automaton B. The reason is that we’ll
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use it either to compute the intersection between a type and pattern (in type inference) or
between a pattern with itself (in the ambiguity check).

Note also that the intersection between label classes is extremely simplified in my case
(I only need to handle the three cases “` ∩ ` = `”, “∼ ∩ ` = `” and “∼ ∩∼ = ∼”)

Differently from Hosoya, I define the product only between automata without ε-transitions.
Hosoya instead needs to use automata with ε-transitions in the product because ε−elim(A)
operation we’ve seen in 4.2.1 doesn’t preserve strong ambiguity (refer to the section ?? for
a related discussion).

I don’t give pseudo–code for the product as it merely follows the formalization above.
Indeed refer to the difference algorithm in the section 4.3.4 for an example of a compositional
algorithm on the automata (actually the product algorithm could be actually “extracted”
from the difference algorithm as an its subset).

4.3.2 Type inference

Given an automaton A that represent an input type and an automaton B that represent a
pattern, the inference algorithm works in two steps.

First, it specializes B with respect to A such that the resulting automaton C behaves
exactly the same as B except that it accepts only values from A. For this it uses the product
construction above that preserves the variable binding behavior in B.

Second, it obtains for each variable x an automaton Dx such that Dx accepts a value
v if and only if C accepts some value from A and yields a binding of x to v. It computes
this automaton from C by retaining all transitions with the annotated set containing x and
eliminating all the other.

Formally, given ε-free automata A and B, we first take the product of them and then
eliminate useless states (note that ε-elimination preserves the binding behavior).

C = ∅−elim(A × B)

My algorithm works in the following way: collect all the subautomata of a pattern
(included the pattern itself), then update the inferred types of the variables encountered.

We then compute the following automaton Dx for each variable x.

st(Dx) = st(C)

init(Dx) = init(C)

fin(Dx) = fin(C)

tr(Dx) =

�
q1

l[Y ]−−→ q2

???? q1
S: l[Y ]−−−−→ q2 ∈ tr(C) x ∈ S

�
∪
�

q1
ε−→ q2

???? q1
S: l[Y ]−−−−→ q2 ∈ tr(C) x /∈ S

�
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Despite the bigger complexity of the formalization of Hosoya in section 5 of [Hos03] I
think he uses the same algorithm and that this bigger complexity is only due to the choice
to include subautomata in the main automaton.

4.3.3 Ambiguity Check

Given an automaton A representing the input type and an automaton B representing a
pattern, consider the following procedure in four steps to check if B is weakly ambiguous at
top–level w.r.t A

1. compute the product C = B × B

2. eliminate the useless states from C

3. compute the product D between A and the resulting automaton

4. check that in D there are no states 〈p, 〈q, r〉〉 such that q = r

Here top–level means that we check if there is ambiguity between labels at top–level, without
searching for ambiguity inside subautomata.

To see why it’s correct let us consider a more simplified setting, removing the input type
so that resulting algorithm is given by the steps 1, 2 and 4 of the algorithm above. Note
that this is the same example Hosoya does in section 6 of [HP03] where it limits reasoning
to string automata (that is the same we do above talking about top–level ambiguity of tree
automata), with no ε-transition (we don’t need them because we check for weak ambiguity
instead of strong ambiguity) and to no input type.

The given algorithm check whether there are two different accepting paths (i.e. a path
from an initial state to a final state) that spell out the same string. Indeed, if there are two
different accepting paths in B

q1 . . . qn q′1 . . . q′n

both spelling out a string s, then there is an accepting path

< q1, q
′
1 > . . . < qn, q′n >

spelling out s where qk 6= q′k for some k, and vice versa. Note that < qk, q′k > is not discarded
by the step 2 of the algorithm, because it is in an accepting path. But then we’ve finished,
because an automaton is weakly ambiguous if and only if each value v can be traced uniquely
with a path through the automaton.

Formally, given ε-free automata A and B, we first compute the automaton:

D = ∅−elim(A × (B × B))
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Then we check than for all 〈p, 〈q, r〉〉 ∈ D we have that q 6= r.
Note that D has the binding behavior of B (the rightmost operand in the series of

products).
The complete algorithm applies the procedure above to the top–level automaton. Then

if it doesn’t find ambiguity, it recursively calls itself applying the procedure to immediately
descendent subautomata, and so on. Recursion is avoided by storing the list of automata
that have already been checked and not checking them again.

4.3.4 Difference Automata

The construction of the difference automata is similar but not the same as the usual subset
construction.

For s a set {s1, . . . , sk}, write Ỹs for {Ys1 , . . . , Ysn} and similarly p̃s.
Given two element automata Mi = (Qi, Q

init
i , Qfin

i , δi) (where i = 1, 2) the difference
between M1 and M2 is an automaton M = (Q,Qinit, Qfin, δ) as follows.

Q = Q1 ×P(Q2)

Qinit = {〈q1, {Qinit
2 }〉 | q1 ∈ Qinit

1 }
Qfin = {〈q1, P 〉 | q1 ∈ Qfin

1 and P ⊆ Q2 and P ∩Qfin
2 = ∅}

δ = {(〈q1, fPN 〉, l[Y \eYs], 〈q′1, ePN\s〉 | (q1, l[Y ], q′1) ∈ δ1

and let N be the least set containing all n: pn
l[Yn]−−−→ p′n

and s ranges over all subsets of N}

Highlights of the algorithm

To understand why we need to use the strange subset construction above, consider the
following

a[x], b[x]\(a[y], b[y] | a[z], b[z])

We proceed the difference by first subtracting a[y],b[y] from a[x],b[x]. This yields

(a[x]\a[y]), b[x] | a[x], (b[x]\b[y])

That is, we obtain the union of two expressions, one resulting from subtracting the first
component and the other resulting from subtracting the second. This can be understood
by observing that “a value a[v], b[w] being not in a[y], b[y]” means “either a[v] being not
in a[y] or b[w] being not in b[y]”. Now, back to the original difference calculation, we next
subtract the second clause a[z], b[z] from the above result. Performing a similar subtraction,
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we obtain:

(a[x]\(a[y] | a[z])), b[x]

| (a[x]\a[y]), (b[x] | b[z])

| (a[x]\a[z]), (b[x] | b[y])

| a[x], (b[x]\(b[y] | b[z]))

Thus, the original goal of difference has reduced to the combination of the subgoals of
difference. Let us consider only the first difference (a[x]\(a[y] | a[z])) since the other are
similar. Since all expressions appearing here are single-elements with a[], the result is
obviously a single-element with a[]. What is less obvious is that its content is the difference
between the variable x and the “union” of the variables y and z. In general, given two
grammars, we have to compute the difference between a variable from one grammar and a
set of variables from the other grammar. This is why the algorithm involves a sort subset
construction (note however that we don’t standard subset construction).

Wrong formalization

Hosoya gives both in [HM02b] and in [HM02a] the following definition.
Given two element automata Mi = (Qi, Q

init
i , Qfin

i , δi) (where i = 1, 2) the difference
between M1 and M2 is an automaton M = (Q,Qinit, Qfin, δ) where14:

Q = Q1 × P(Q2)

Qinit = 〈Qinit
1 , {Qinit

2 }〉
Qfin = {〈q1, P 〉 | q1 ∈ Qfin

1 and P ⊆ Q2 and P ∩Qfin
2 6= ∅}

δ = {(〈q1, {p1, . . . , pk}〉, l[〈Y, {Y1, . . . , Yk}〉], 〈q′1, {p′1, . . . , p′k}〉) |
(q1, l[Y ], q′1) ∈ δ1 and {(p1, l[Y1], p

′
1), . . . , (pk, l[Yk], p′k)} ⊆ δ2}

This algorithm (that is actually the standard subset construction) is wrong. Consider
first that it doesn’t handle properly the case ε\ε (it returns ε instead of ∅).

However the wrong handling of base cases (ε) is not the only problem. For example, algo-
rithm above would compute wrongly a[x],b[x] \ a[y],b[y] = a[x\y], b[x\y] instead
of a[x], b[x\y] | a[x\y], b[x].

To see that this is wrong consider for instance x = l1 | l2 and y = l2. We would have
as an answer a[l1],b[l1], instead of the correct answer a[l1],b[l1] | a[l1],b[l2] |

a[l2],b[l1].
For example in the following XRel source code

14I fixed several typographical errors here
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import a[l1|l2],b[l1|l2];

typeswitch {

case a[l1],b[l1]: ...

case a[l1],b[l2]: ...

case a[l2],b[l1]: ...

case a[l2],b[l2]: ...

}

that is correct, the algorithm above asserts that the second clause is redundant. The irredun-
dancy check for the second clause is a[l1],b[l2] ∩ (a[l1|l2],b[l1|l2] \ a[l1],b[l1])
6= ∅. Because the algorithm wrongly asserts that (a[l1|l2],b[l1|l2] \ a[l1],b[l1]) =
a[l2],b[l2]), the irredundancy wrongly claims that the second case is redundant.

Pseudo–Code

A.buildDiff(A1,A2) computes the difference A1 \A2 between A1 and A2; it’s invoked as a
method on the difference automaton to build.

void buildDiff(TA A1, TA A2) {
// create initial states

// (note that the automaton has as many initial states as A1)

for each state s1 in A1.initialStates {
// create the subset state that collects states of A2

new s = <s1,A2.initialStates>;

states = states ∪ s;

initialStates = initialStates ∪ s;

// final iff s1 is final and there are no final states in

// A2.initialStates (remember we compute the difference:

// A1\A2 recognizes the empty string if and only if A1

// recognizes the empty string but A2 don’t recognize it)

if (s1.isFinal && (A2.initialStates ∩ A2.finalStates) = ∅) {
finalStates = finalStates ∪ s;

}
}
// Then iterate adding transitions and the other states

for each s in states {
processState(A1,A2,s); // s = <s1,s2List>

}
}
Note that states of a difference automaton are different from those of a normal automaton
derived by a pattern because they have the form <state, states’ set> (e.g. <p1,{q1,... qn}>).
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Also, transitions contents have the form <Y \(Y1|...|Yn)> where Y,Y1,... Yn are pattern
names referencing subautomata.

The subroutine processState takes in input a state s = <s1,s2List> and builds two
sets:

1. srcTransitions is the set of transitions starting from s1 that have been normalized
(we’ll see in the next section what it means).

2. dstTransitions is the set of all the transitions exiting from states in s2List

I use srcTransitions instead of directly to use s1.transitions because I won’t to modify
transitions of automaton A1 (normalization can possibly add new transitions and modify
existing ones).

Then, processState invokes the subroutine processMatchingTransitions on each
transition t1 in srcTransitions passing to it:

1. the transition t1

2. the set of transitions in dstTransitions that label–match with t1 (two transitions
label–match if their labels match)

3. the state s = <s1,s2List>

The subroutine processMatchingTransitions will take the source state s, the tran-
sition t1 exiting from s1 and the transitions dstTransitions exiting from the states in
s2List and will build the new transitions for the difference automaton that exit from s

along with the new arriving states.
Here’s the code for processState.

void processState(TA A1, TA A2,TADifferenceState s) {
// build the list of transitions exiting from the

// difference states (difference states are states in s2List,

// where s = <s1,s2lList>)

HashSet dstTransitions = ?;
for each state slEl in s2List such that s = <s1,s2lList> {

dstTransitions = dstTransitions ∪ slEl.transitions;

}

// Label normalization

HashSet srcTransitions =

normalizeLabels(s.s1.transitions,slTransitions);

// now loops through transitions
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for each transition t1 in srcTransitions {
// t2List is the list of transitions label-matching with t1

HashSet t2List = ?;
for each transition t2 in dstTransitions {

if (t1.label matches with t2.label)

tList = tList ∪ t2;

}
// finally call the code matching transitions

processMatchingTransitions(t1,t2List,s);

}
}

Finally the subroutine processMatchingTransitions contains the more interesting part
of the code. It takes in input a transition t1 of the automaton A1, a set t2List of transitions
of A2 label–matching with t1 and a starting state s of the difference automaton and it adds
to the difference automaton the transitions exiting from s and the arrival states (if they’re
new).

Here’s the code.

void processMatchingTransitions(TATransition t1,

HashSet t2List,TADifferenceState srcState) {
// Given n = tList.size() we need to build 2n new transitions

// that will start from srcState and will go into 2n distinct

// (possibly new) states, all with "l" as label.

int n = tList.size;

int subsetNum = 2n;

/* loop through the first 2n naturals (c stands for counter).

* c is used both as counter and as subset specifier of tList:

* the first n digits of the counter represent the elements

* of tList (1 is in the subset, 0 is not).

* For each loop of this cycle we create a new transition and

* possibly a new state */

for each c in {1,...,2n} {
/* before to create the new transitions we need to compute

* the current subset of subtrees to differentiate and the

* current subset of states to differentiate.

* The two subsets are one the complement of the other.

* For example if n=3 and c=2 (010 in binary) I take my subtrees

* to differentiate from the first and the third transition

* in tList (because the first and third digits of c are 0),

* whereas my set of states to differentiate is the singleton

* given by the destination state of the second transition in
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* tList (because the second digit of c is 0).

* For example given tList as follows

* tList[0] = "q3 = a[x] --> q4"

* tList[1] = "q5 = a[y] --> q6"

* tList[2] = "q7 = a[z] --> q8"

* if c=5 I take diffTrees = {x,z} and diffStates = {q6}
*/

HashSet diffTrees = ∅; // set of strings (names of automata)

HashSet diffStates = ∅; // set of (destination) states

if (n > 0) {
for (int i=0; i<n; i++) {

int bitmask = 1 << i;

if ((c & bitmask) != 0) {
diffStates = diffStates ∪ tList[i].dst;

}
else {

diffTrees = diffTrees ∪ tList[i].content;

}
}

}
// find the destination state

// if destination state doesn’t exist create it

if (<t1.dst, diffStates> doesn’t exist) {
new destState = <t1.dst,diffStates>;

states = states ∪ destState;

/* final if the destination in t1 is final but there are

* not final destination states in the list of states to

* subtract */

if (t1.dst.isFinal &&

(finalStates ∩ diffStates = ∅) {
finalStates = finalStates ∪ destState;

}
}
// else use that existent one

else destState = <t1.dst,diffStates>;

// create the new transition

content = <t1.content, diffTrees>;

// Note that bindings are discarded (I put variables to null)

new nt = TATransition(l,srcState,destState,content,∅);
// diffLabels = l1 | ln are labels removed from a

// wildcard label as in (~\diffLabels)[...]



84 CHAPTER 4. IMPLEMENTATION

// (see Label Normalization section below)

nt.diffLabels = nt.diffLabels ∪ t1.diffLabels;

transitions = transitions ∪ nt;

}
}

This code takes a transition from the automaton A1 and n transitions from automaton A2

and builds 2n transitions in the difference automaton, each corresponding to a subset of the
transitions in A2 (this is for what is a kind of subset construction). However, observe that the
building is different from that of the usual subset construction for string automata. In fact,

we need to “revert” links: this means that if we have the transition t = q1
a[Y ]−−→ q′1 ∈ tr(A1)

and the transitions t1 = p1
a[Y1]−−−→ p′1, . . . , tn = pn

a[Yn]−−−→ p′n ∈ tr(A2) then, for each subset

{i1, . . . , ik} ⊆ {1, . . . , n}, (k ≤ n), we have the transition 〈q1, {p1, . . . , pn}〉
a[Y \(Yi1 ,Yik

)]
−−−−−−−−−−→

〈q′1, {p′ik+1
, p′in

}〉
For example if n=3 and we take the subset {1,2} (k=2) then we have the transition

〈q1, {p1, p2, p3}〉 a[Y \(Y1,Y2)]−−−−−−−−−→ 〈q′1, {p′3}〉.
I’ve deployed this algorithm adapting the old subtyping algorithm on grammars I found

in [Hos01].

Label normalization

As we’ve seen above the function normalizeLabels(a1TransSet,a2TransSet) takes in
input a set a1TransSet of transitions from automaton A1 and a set a2TransSet of transitions
from automaton A2 and returns the set a1TransSet normalized.

The normalization of the transitions in a1TransSet fixes a problem with the algo-
rithm above. Specifically suppose to have ~[Y1] \ a[Y2]: what is the result? well,
to write ~[Y1] \ a[Y2] is the same as to write (~\a)[Y1] | a[Y1] \ a[Y2] so the re-
sult is (~\a)[Y1]| a[Y1\Y2] — consider for example ~[l1,l2] \ a[l1] whose result is
(~\a)[l1,l2] | a[l2].

Actually the algorithm in processMatchingTransitions requires that label classes are
disjoint, so we need to split transitions with wildcard labels as in the example I shown above.
Note that not only ~[...] but also #String[...] is a wildcard label — we could replace
the examples above with #String[...] \ #"hello"[...].

This is what label-normalization algorithm does: it splits the transitions in a1TransSet

with wildcard labels so that they’re equal or disjoint with the labels in a2TransSet. I omit
the code because it’s straightforward.

So label classes L in difference automata also need to have the case ~\(l1 |...| ln).
This is a reason for which label classes were a design issue in XRel (see Section 3.3.2, page
49).
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4.3.5 Emptiness Test On Automata

Hosoya gives in [HM02a] a non–emptiness test for compound regular expressions, i.e. for
regular expressions with elements and attributes. Below I report an adaptation for element-
only expressions and for my framework.

Given a mapping F from pattern names Y to patterns F (Y ), we compute a series of
(total) functions φ0,φ1,. . . from the names in dom(F ) to booleans, as defined below.

φ0(Y ) = false

φi(Y ) = nemp(F (Y ))φi−1

where the function nemp is inductively defined as follows.

nemp(l[Y ])φ = φ(Y )

nemp(())φ = true

nemp(P1, P2)φ = nemp(P1)φ ∧ nemp(P2)φ

nemp(P1 | P2)φ = nemp(P1)φ ∨ nemp(P2)φ

nemp(P∗)φ = nemp(P )φ

nemp(P as x)φ = nemp(P )φ

This algorithm was somewhat unsatisfactory for me as I needed an algorithm on tree
automata, so I’ve re–written it for automata. Below I give my pseudo–code.

Non–emptiness test on automata

// check if an automaton is empty

public boolean isNull() {

// take the list of all the subautomata and include myself

HashSet saList = getDescendantAutomata();

saList.add(name);

/* In the fixpoint algorithm defined below the following mapping

* from automata names to boolean values will contain the partial

* emptiness values of the automata.*/

HashMap map = new HashMap(); // map: automata -> booleans

// Initialize mapping from automata to emptiness values

// in the following way. Given a subautomaton sa:

// - if sa recognizes the empty string then set map[sa] = false

// - else map[sa] = true

// The algorithm would work well also filling all emptiness values

// with true (the shown inizialization is an optimization)

for each string saName in saList {

TA sa = symtab.M(saName);

if (sa.recognizesEmptyString()) map(saName) = false;

else map(saName) = true;
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}

// now let us begin with the fixpoint algorithm

boolean fixpoint; // we have reached the fixpoint?

do {

fixpoint = true;

for each saName in dom(map) {

TA sa = symtab.M(saName);

// fixpoint iteration

if ((map(saName) == true) && (sa.isNullYet(map) == false)) {

/* the empty value for sa is changed! update the map and

* force another loop */

map(saName) = false;

fixpoint = false;

}

}

} while (!fixpoint);

return map(this);

}

We give also subroutines. recognizesEmptyString() simply returns true if the current
automaton recognizes the empty sequence, while isNullYet() is the equivalent of the nemp

function formalized above (actually is !nemp).

private boolean recognizesEmptyString() {

for each s in initialStates {

if (s.isFinal()) return true;

}

return false;

}

private boolean isNullYet(HashMap map) {

/* the valid transitions are the transitions with

* a non-empty content automaton */

Vector validTransitions = new Vector();

for each transition t in transitions {

if (map(t.content) == false)

validTransitions.add(t);

}

// validStates are states reachable from the the initial ones

Vector validStates;

// add before all the initial states

validStates = initialStates;

// then add all the states reachable with valid transitions
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boolean changed;

do {

changed = false;

for each transitions vt in validTransitions {

if (validStates.contains(vt.src)) {

changed = true;

validTransitions.remove(vt);

// also add the destination state

if(!validStates.contains(vt.dst)) validStates.add(vt.dst);

}

}

} while(changed);

// finally check if it exists at least a reachable final state

for each fs in finalStates {

if (validStates.contains(fs)) return false;

}

// I’ve not found any reachable final state, is null yet

return true;

}
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Appendix A

BNF grammar of XRel

This appendix contains a formal BNF grammar generated from the tool JJDoc1.

A.1 Non-Terminals

Program ::= TypeDecl* ImportSt ExportTp? SwitchCase?

TypeDecl ::= <TYPE> Identifier "=" TypeExpr ";"

ImportSt ::= <IMPORT> TypeExpr ";"

ExportTp ::= <EXPORT> TypeExpr ";"

SwitchCase ::= <SWITCH> "(" Identifier ")"

"{" Case* ( <CASEDEFAULT> ":" StatementList )? "}"

Case ::= <CASE> TypeExpr ":" StatementList

StatementList ::= "{" Statement* "}"

| ";"

| Statement

Statement ::= <PRINT> "(" ValueExpr ")" ";"

ValueExpr ::= ValueTerm ( "," ValueTerm )*

ValueTerm ::= Label "[" "]"

| Label "[" ValueExpr "]"

| Identifier

| "(" ValueExpr ")"

| "()"

| Literal

TypeExpr ::= CommaSeq ( "|" CommaSeq )*

CommaSeq ::= UnaryOp ( "," UnaryOp )*

1I’ve removed useless parentheses and hand-formatted the grammar generated from JJDoc, the original

code is in the file doc\XRel grammar.html
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UnaryOp ::= TermExpr ( "*" | "+" | "?" )? ( <AS> Identifier )?

TermExpr ::= Label "[" "]"

| Label "[" TypeExpr "]"

| Identifier

| "(" TypeExpr ")"

| "()"

| PrimitiveType

| Literal

Literal ::= <STRING_LITERAL>

PrimitiveType ::= <STRING>

Label ::= <ANYTAG> | <IDENTIFIER>

Identifier ::= <IDENTIFIER>

A.2 Terminals

ANYTAG ::= "~"

AS ::= "as"

CASE ::= "case"

CASEDEFAULT ::= "default"

IDENTIFIER ::= <LETTER> ( <LETTER> | <DIGIT> | <UNDERSCORE> )*

IMPORT ::= "import"

EXPORT ::= "export"

PRINT ::= "printf"

STRING ::= "String"

STRING_LITERAL ::= ... double quoted strings ...

SWITCH ::= "typeswitch"

TYPE ::= "typedef"



Bibliography

[BCF02] Veronique Benzaken, Giuseppe Castagna, and Alain Frisch. CDuce: a white
paper. Available on: http://www.cduce.org, November 2002.

[BCF03] Veronique Benzaken, Giuseppe Castagna, and Alain Frisch. CDuce: An XML-
centric general-purpose language. Available on: http://www.cduce.org, Au-
gust 2003.

[BIM+] BEA, IBM, Microsoft, SAP, and Siebel. Business process execution language
for web services (BPEL4WS). http:// ifr.sap.com/ bpel4ws/.

[BK91] Anne Brueggemann-Klein. Regular expressions into finite automata. Technical
report, 1991.

[Bus] Business Process Management Initiative. Business process modelling notation
(BPML). http:// www.bpmi.org/.

[CDG+97] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997. release October, 1rst 2002.

[CM01] James Clark and Makoto Murata. RELAX NG. http://www.relaxng.org,
2001.

[Con01] W3C World Wide Web Consortium. XML Schema Part 0: Primer, May 2001.
http://www.w3.org/TR/xmlschema-0/.

[Con02] W3C World Wide Web Consortium. Web services activity web site, 2002.
http://www.w3.org/2002/ws/.

[Con03] W3C World Wide Web Consortium. SOAP Version 1.2 Part 0: Primer, June
2003. http://www.w3.org/TR/soap12-part0/.

[Cor] Microsoft Corporation. Biztalk server. http:// www.microsoft.com/ biztalk/.

91



92 BIBLIOGRAPHY

[DFF+] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. XML-QL: A
query language for XML. http://www.w3.org/TR/NOTE-xml-ql.

[DOM] Document object model (DOM). http://www.w3.org/DOM/.

[FGM+99] Robert Fielding, Jim Gettys, Jeff Mogul, Henrik Frystyk, L. Masinter, Paul
Leach, and Tim Berners-Lee. Hypertext transfer protocol – HTTP/1.1. RFC
2616, June 1999. http://www.ietf.org/rfc/rfc2616.txt.

[FMM+03] M. Fernández, A. Malhotra, J. Marsh, D. Florescu, J. Siméon,
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